Annexes

Annexe A

Runs physiques et piédestaux du test faisceau du calorimètre de juillet 2002

Les tableaux A.1 et A.2 donne l'ensemble des runs piédestaux et physiques qui étaient à notre dispositions pour les diverses études du chapitre 6.

Run	Energie (GeV)	Particule	x	у	Date	Heure
552	120	μ	220	77	2002-07-17	16 :04
553	120	μ	220	77	2002-07-18	10 :05
554	120	μ	220	77	2002-07-18	14 :43
557	120	p	220	77	2002-07-18	15 :38
573	120	p	238	78	2002-07-18	21 :43
586	120	p	238	78	2002-07-19	04 :47
592	120	p	287	107	2002-07-19	07 :03
593	120	p	287	107	2002-07-19	09 :05
602	120	p	296	116	2002-07-19	13 :45
613	120	p	314	123.9	2002-07-19	19:00
631	120	p	314	133.2	2002-07-20	06 :00
641	120	p	238	78	2002-07-20	10 :07
652	120	p	305	152	2002-07-20	14 :26
655	120	p	323	152	2002-07-21	00 :14
664	120	p	341	170	2002-07-21	03 :51
675	120	p	260	179	2002-07-21	08 :28
694	120	p	302	152	2002-07-21	17 :15
708	120	p	302	152	2002-07-21	22 :52
723	120	p	302	562	2002-07-22	02 :55
731	120	p	302	152	2002-07-22	04 :04
754	10	e^-	283.8	125	2002-07-22	16 :39
759	15	e^-	302	134	2002-07-22	20 :00
770	20	e^-	248	89	2002-07-23	01 :03

Tab. A.1: Ensemble des runs piédestaux utilisés dans ce travail de thèse (à suivre).

Run	Energie (GeV)	Particule	x	у	Date	Heure
780	20	e ⁻	302	143	2002-07-23	05 :28
794	6	e^{-}	302	152	2002-07-23	14 :39
799	6	e^-	338.3	107.8	2002-07-23	17:25
802	3	e^{-}	302	152	2002-07-24	01:38
805	3	e^-	302	152	2002-07-24	04 :42
811	120	e^{-}	304.9	143.2	2002-07-24	21 :35
819	120	e^-	359.2	197.1	2002-07-25	00 :57
829	120	e^-	251.2	106.9	2002-07-25	05 :03
842	120	e^-	304	151	2002-07-25	09:35
849	120	e^-	268	151	2002-07-25	12 :15
859	120	e^-	304	151	2002-07-25	17 :08
868	120	e^-	304	151	2002-07-25	20 :58
879	120	e^{-}	259	97	2002-07-26	01 :12
891	120	e^-	268	79	2002-07-26	05 :51
896	120	e^{-}	302	152	2002-07-26	09 :59
925	120	e^-	275	404	2002-07-26	13 :26
942	120	e^-	235	78	2002-07-26	15 :42
954	120	e^-	302	152	2002-07-26	18 :29
971	80	e^-	338	116	2002-07-26	23 :41
976	50	e^-	302	152	2002-07-27	01 :02
990	30	e^-	329	152	2002-07-27	08 :07
1001	6	e^-	302	143	2002-07-27	13 :59
1011	50	e^-	235	78	2002-07-27	18 :32
1028	50	e^-	302	152	2002-07-27	21 :36
1043	50	e^-	365	404	2002-07-27	23 :02
1058	50	e^-	248	674	2002-07-28	00 :56
1075	50	e^-	365	125	2002-07-28	02:33
1090	50	e^-	293	197	2002-07-28	04 :04
1105	50	e^-	842	80	2002-07-28	05 :47
1115	120	e^-	464	161	2002-07-28	11 :57
1131	120	\bar{p}	572	79	2002-07-28	18 :00
1146	120	\bar{p}	572	197	2002-07-28	21 :51
1148	120	\bar{p}	365	404	2002-07-28	22 :28
1163	120	\bar{p}	305	152	2002-07-29	01 :15
1175	120	\bar{p}	305	152	2002-07-29	08 :31
1179	120	\bar{p}	842	107	2002-07-29	09 :33
1191	120	\bar{p}	305	152	2002-07-29	11 :21
1209	180	\bar{p}	305	78	2002-07-29	19 :15
1217	50	e^{-}	242	80	2002-07-30	00 :02
1223	50	e-	287	80	2002-07-30	01:36
1229	50	e^{-}	332	80	2002-07-30	02 :59
1233	50	e^{-}	359	80	2002-07-30	03 :45
1241	50	e^{-}	302	154	2002-07-30	06 :20

Tab. A.1: Ensemble des runs piédestaux utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
1271	120	\bar{p}	1238	134	2002-07-30	23 :00
1279	120	e^-	1238	116	2002-07-31	03 :15
1280	120	e^-	1238	116	2002-07-31	03 :19
1281	120	e^-	1238	116	2002-07-31	03 :24
1282	120	e^-	1238	116	2002-07-31	03 :26

Tab. A.1: Ensemble des runs piédestaux utilisés dans ce travail de thèse (suite).

Tal	b.	A.2:	Ensemble	des r	uns	physiques	utilisés	dans	ce	travail	de	thèse	(à	suivre).
-----	----	------	----------	-------	-----	-----------	----------	------	----	---------	----	-------	----	--------	----

Run	Energie (GeV)	Particule	x	У	Date	Heure
558	120	p	232	97	2002-07-18	15 :04
568	120	p	255	111	2002-07-18	18 :22
569	120	p	261	116	2002-07-18	18 :04
570	120	p	265	118	2002-07-18	19:04
571	120	p	238	82	2002-07-18	19:03
574	120	p	256	96	2002-07-18	21 :57
575	120	p	260	98	2002-07-18	22 :41
576	120	p	269	98	2002-07-18	23 :12
577	120	p	278	98	2002-07-18	23 :41
578	120	p	287	98	2002-07-19	00 :11
579	120	p	296	98	2002-07-19	01:49
580	120	p	305	98	2002-07-19	02 :15
581	120	p	314	98	2002-07-19	02:41
582	120	p	323	98	2002-07-19	03 :07
583	120	p	332	98	2002-07-19	03 :33
584	120	p	341	98	2002-07-19	03 :58
585	120	p	341	107	2002-07-19	04 :23
587	120	p	332	107	2002-07-19	04 :49
588	120	p	323	107	2002-07-19	05 :15
589	120	p	314	107	2002-07-19	05 :39
590	120	p	305	107	2002-07-19	06 :07
591	120	p	296	107	2002-07-19	06 :34
594	120	p	287	107	2002-07-19	09:56
595	120	p	278	107	2002-07-19	10 :26
596	120	p	269	107	2002-07-19	10 :55
597	120	p	260	107	2002-07-19	11 :02
598	120	p	260	116	2002-07-19	11 :54
599	120	p	269	116	2002-07-19	12 :28
600	120	p	278	116	2002-07-19	13 :00
601	120	p	287	116	2002-07-19	13 :19
603	120	p	296	116	2002-07-19	13 :46
604	120	p	305	116	2002-07-19	14 :17
605	120	p	314	116	2002-07-19	15 :00
606	120	p	323	116	2002-07-19	15 :02

Run	Energie (GeV)	Particule	x	у	Date	Heure
607	120	p	332	116	2002-07-19	15 :51
608	120	p	340.9	116	2002-07-19	16 :02
609	120	p	340.9	124.9	2002-07-19	16:47
610	120	p	331.9	124.9	2002-07-19	17:15
611	120	p	322.8	124.9	2002-07-19	17:45
612	120	p	314	124.9	2002-07-19	18:35
614	120	p	305	123.9	2002-07-19	19:06
615	120	p	296.2	123.9	2002-07-19	19:32
616	120	p	286.7	123.9	2002-07-19	20:01
617	120	p	278	123.9	2002-07-19	21 :08
618	120	p	269.1	123.9	2002-07-19	21 :34
619	120	p	259.9	123.9	2002-07-19	22 :00
620	120	p	260	133.2	2002-07-19	22 :24
621	120	p	251	133.2	2002-07-19	22 :05
622	120	p	242	133.2	2002-07-19	23 :00
623	120	p	232.9	133.2	2002-07-19	23 :41
624	120	p	224	133.2	2002-07-20	80: 00
625	120	p	269	133.2	2002-07-20	00 :35
626	120	p	278	133.2	2002-07-20	01 :00
627	120	p	287	133.2	2002-07-20	01 :25
628	120	p	296	133.2	2002-07-20	02 :00
629	120	p	305	133.2	2002-07-20	05 :00
630	120	p	314	133.2	2002-07-20	05 :30
632	120	p	323	133.2	2002-07-20	06 :01
633	120	p	332	133.2	2002-07-20	06 :29
634	120	p	341	134	2002-07-20	06 :59
635	120	p	341	143	2002-07-20	07 :20
636	120	p	332	143	2002-07-20	07:45
637	120	p	323	143	2002-07-20	08 :12
638	120	p	314	143	2002-07-20	08 :39
639	120	p	305	143	2002-07-20	09 :05
640	120	p	296	143	2002-07-20	09:31
642	120	p	287	143	2002-07-20	10 :09
643	120	p	278	143	2002-07-20	10 :37
644	120	p	269	143	2002-07-20	11 :02
645	120	p	260	143	2002-07-20	11 :27
646	120	p	260	152	2002-07-20	11 :55
647	120	p	269	152	2002-07-20	12 :21
648	120	p	278	152	2002-07-20	12 :46
649	120	p	287	152	2002-07-20	13 :12
650	120	p	296	152	2002-07-20	13 :03
651	120	p	305	152	2002-07-20	14 :00
653	120	p	314	152	2002-07-20	14 :03

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
654	120	p	323	152	2002-07-20	23 :48
656	120	p	332	152	2002-07-21	00 :15
657	120	p	341	152	2002-07-21	00:41
658	120	p	341	161	2002-07-21	01:05
659	120	p	332	161	2002-07-21	01:32
660	120	p	323	161	2002-07-21	02 :03
661	120	p	323	170	2002-07-21	02 :28
662	120	p	332	170	2002-07-21	03 :02
663	120	p	341	170	2002-07-21	03 :29
665	120	p	341	179	2002-07-21	03 :54
666	120	p	332	179	2002-07-21	04 :21
667	120	p	323	179	2002-07-21	04 :47
668	120	p	314	179	2002-07-21	05 :13
669	120	p	305	179	2002-07-21	05 :38
670	120	p	296	179	2002-07-21	06 :06
671	120	p	287	179	2002-07-21	06 :31
672	120	p	278	179	2002-07-21	07 :00
673	120	p	269	179	2002-07-21	07:25
674	120	p	260	179	2002-07-21	08 :02
676	120	p	260	170	2002-07-21	08 :30
677	120	p	269	170	2002-07-21	08 :55
678	120	p	278	170	2002-07-21	09 :22
679	120	p	287	170	2002-07-21	09:48
680	120	p	296	170	2002-07-21	10 :14
681	120	p	305	170	2002-07-21	10 :42
682	120	p	314.1	170	2002-07-21	11 :19
683	120	p	314	166	2002-07-21	11 :46
684	120	p	305	161	2002-07-21	12 :27
685	120	p	296	161	2002-07-21	12 :56
686	120	p	287	161	2002-07-21	13 :25
687	120	p	278	161	2002-07-21	13 :51
688	120	p	269	161	2002-07-21	14 :17
689	120	p	260	161	2002-07-21	14 :43
690	120	p	248	80	2002-07-21	15 :21
691	120	p	248	89	2002-07-21	15 :52
692	120	p	356	188	2002-07-21	16 :21
693	120	p	356	197	2002-07-21	16 :47
695	120	p	302	152	2002-07-21	17 :16
696	120	p	302	152	2002-07-21	17:41
697	120	p	302	152	2002-07-21	18 :05
698	120	p	302	152	2002-07-21	18 :30
699	120	p	302	152	2002-07-21	18 :55
700	120	p	302	152	2002-07-21	19:20

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
701	120	p	302	152	2002-07-21	19:45
702	120	p	302	152	2002-07-21	20 :11
703	120	p	302	152	2002-07-21	20:39
704	120	p	302	152	2002-07-21	21 :05
705	120	p	302	152	2002-07-21	21:30
706	120	p	302	152	2002-07-21	21 :56
707	120	p	302	152	2002-07-21	22 :02
709	120	p	302	152	2002-07-21	22 :53
710	120	p	302	152	2002-07-21	23 :19
711	120	p	302	152	2002-07-21	23 :43
712	120	p	302	152	2002-07-22	80: 00
732	120	p	302	152	2002-07-22	04 :55
733	120	p	302	152	2002-07-22	05 :03
734	120	p	302	152	2002-07-22	05 :05
735	120	p	302	152	2002-07-22	06 :18
736	120	p	302	152	2002-07-22	06 :45
737	120	p	302	152	2002-07-22	07 :15
738	120	p	302	152	2002-07-22	07:04
739	120	p	302	152	2002-07-22	08 :05
740	120	p	302	152	2002-07-22	08 :03
741	120	p	302	152	2002-07-22	09:41
742	120	p	302	152	2002-07-22	10 :15
743	120	p	302	152	2002-07-22	10 :03
747	10	e^-	302	152	2002-07-22	12 :01
748	10	e^-	302	152	2002-07-22	12 :45
749	10	e^-	356	152	2002-07-22	13 :03
750	10	e^-	356	152	2002-07-22	14 :08
751	10	e^-	247.9	89.1	2002-07-22	14 :41
752	10	e^-	266	107	2002-07-22	15 :02
753	10	e^-	283.8	125	2002-07-22	16 :03
755	10	e^-	302	143	2002-07-22	16 :43
756	10	e^-	320	161	2002-07-22	17 :11
757	10	e^-	338	179.1	2002-07-22	17:41
758	15	e^-	338	179.1	2002-07-22	19:35
760	15	e^-	302	134	2002-07-22	20 :03
761	15	e^-	302	134	2002-07-22	20 :27
762	15	e^-	302	143.1	2002-07-22	20 :54
763	15	e^-	302	143.1	2002-07-22	21 :19
764	20	e^-	302	143.1	2002-07-22	22 :02
765	20	e^-	302	143.1	2002-07-22	22 :05
766	20	e^-	284	125	2002-07-22	23 :27
767	20	e^-	266	125	2002-07-22	23 :56
768	20	e^{-}	248	125	2002-07-23	00 :25

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
769	20	e ⁻	248	107	2002-07-23	00 :58
771	20	e^{-}	248	89	2002-07-23	01:31
772	20	e^{-}	266	89	2002-07-23	02 :00
773	20	e^{-}	284	89	2002-07-23	02 :03
774	20	e^{-}	284	107	2002-07-23	03 :00
775	20	e^-	266	107	2002-07-23	03 :03
776	20	e^-	266	107	2002-07-23	03 :57
778	20	e^-	302	143	2002-07-23	04 :31
779	20	e^-	302	143	2002-07-23	05 :00
781	20	e^-	284	125	2002-07-23	05 :31
782	20	e^-	266	125	2002-07-23	06 :00
783	20	e^-	248	125	2002-07-23	06 :23
784	20	e^-	248	107	2002-07-23	07 :00
785	20	e^-	248	89	2002-07-23	07 :23
786	20	e^-	284	107	2002-07-23	08 :06
787	20	e^-	284	89	2002-07-23	08 :38
788	20	e^-	266	89	2002-07-23	09:16
789	6	e^-	302	152	2002-07-23	11 :57
790	6	e^-	302	152	2002-07-23	12 :15
791	6	e^-	302	152	2002-07-23	12 :52
792	6	e^-	302	152	2002-07-23	13 :24
793	6	e^-	302	152	2002-07-23	14 :00
795	6	e^-	302	134	2002-07-23	14 :45
796	6	e^-	320.3	115.8	2002-07-23	15 :26
797	6	e^-	320.3	126	2002-07-23	16 :01
798	6	e^-	338.3	107.8	2002-07-23	16 :51
800	6	e^-	356.2	89.9	2002-07-23	17 :04
801	3	e^-	-	152.2	2002-07-23	19:07
803	3	e^-	302	-	2002-07-24	02 :25
804	3	e^-	302	152	2002-07-24	02 :59
806	120	e^-	251	89	2002-07-24	19:21
807	120	e^-	251	89	2002-07-24	19:25
808	120	e^-	269.2	107.2	2002-07-24	20 :01
809	120	e^-	287	125	2002-07-24	20 :04
810	120	e^-	304.9	143.2	2002-07-24	21 :01
812	120	e^-	304.9	152	2002-07-24	21 :42
813	120	e^-	304.9	152	2002-07-24	22 :02
814	120	e^-	304.9	152	2002-07-24	22 :38
815	120	e^-	304.9	152	2002-07-24	23 :04
816	120	e^-	322.9	161.2	2002-07-24	23 :03
817	120	e^-	340.9	178.8	2002-07-25	00 :03
818	120	e^-	359.2	197.1	2002-07-25	00 :32
820	120	e^{-}	269.2	125.1	2002-07-25	01 :02

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
821	120	e ⁻	251	125.1	2002-07-25	01:27
822	120	e^-	242.1	125.1	2002-07-25	01 :53
823	120	e^-	251.1	79.9	2002-07-25	02 :02
824	120	e^-	269	79.9	2002-07-25	02 :52
825	120	e^-	287	79.9	2002-07-25	03 :17
826	120	e^{-}	287	89.1	2002-07-25	03 :43
827	120	e^{-}	287	106.9	2002-07-25	04 :09
828	120	e^{-}	251.2	106.9	2002-07-25	04 :37
830	120	e^{-}	287	142.9	2002-07-25	05 :05
831	120	e^-	287	178.9	2002-07-25	05 :31
832	120	e^{-}	304.9	125.1	2002-07-25	05 :59
833	120	e^-	322.9	125.1	2002-07-25	06 :25
834	120	e^-	340.9	125.1	2002-07-25	06 :05
835	120	e^-	358.9	125.1	2002-07-25	07:15
895	120	e^-	302	152	2002-07-26	09:57
897	120	e^-	320	152	2002-07-26	10:04
898	120	e^-	338	170	2002-07-26	10:29
899	120	e^-	356	188	2002-07-26	10:44
900	120	e^-	302	134	2002-07-26	10 :59
901	120	e^-	248	82	2002-07-26	11 :16
902	120	e^-	284	116	2002-07-26	11 :29
918	120	e^-	311	152	2002-07-26	12 :55
919	120	e^-	311	152	2002-07-26	01:04
947	150	e^-	302	152	2002-07-26	16 :07
948	150	e^-	302	152	2002-07-26	16 :29
949	150	e^-	302	152	2002-07-26	16 :54
950	150	e^-	329	170	2002-07-26	17 :21
951	100	e^-	302	152	2002-07-26	17 :05
952	100	e^-	302	152	2002-07-26	18 :01
953	120	e^-	302	152	2002-07-26	18 :13
955	120	e^-	302	152	2002-07-26	18 :44
967	80	e ⁻	302	152	2002-07-26	22 :04
968	80	e^-	302	152	2002-07-26	22 :15
969	80	e ⁻	338	152	2002-07-26	22 :45
970	80	e^-	338	116	2002-07-26	23 :11
972	50	e^-	338	116	2002-07-26	23 :53
973	50	e ⁻	329	107	2002-07-26	23 :58
974	50	e^{-}	329	152	2002-07-27	00 :29
975	50	e^{-}	302	152	2002-07-27	00:55
977	35	e^{-}	302	152	2002-07-27	01:48
978	35	e^{-}	302	152	2002-07-27	01 :55
979	50	e^{-}	302	152	2002-07-27	02 :12
980	30	$ e^-$	302	152	2002-07-27	02 :25

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
981	30	e^-	302	152	2002-07-27	02 :39
982	30	e^-	302	152	2002-07-27	03 :23
983	30	e^-	302	152	2002-07-27	03 :36
984	30	e^-	329	152	2002-07-27	04 :37
985	30	e^-	329	152	2002-07-27	05 :33
986	30	e^-	329	152	2002-07-26	06 :35
987	30	e^-	329	152	2002-07-27	07:16
988	30	e^-	329	152	2002-07-27	07:29
989	30	e^-	329	152	2002-07-27	07:37
991	20	e^-	329	152	2002-07-27	08 :21
992	20	e^-	329	152	2002-07-27	08 :27
993	20	e^-	329	152	2002-07-27	09:31
994	20	e^-	302	152	2002-07-27	09 :39
995	10	e^-	302	152	2002-07-27	10 :24
996	10	e^-	302	152	2002-07-27	10:33
997	10	e^-	302	152	2002-07-27	10 :44
998	10	e^-	329	152	2002-07-27	11 :31
999	10	e^-	302	143	2002-07-27	13 :18
1000	6	e^-	302	143	2002-07-27	13 :41
1002	6	e^-	302	152	2002-07-27	14 :07
1026	50	e^-	302	152	2002-07-27	20:41
1027	50	e^-	302	152	2002-07-27	21 :12
1108	35	e^-	302	152	2002-07-28	07:01
1109	35	e^-	302	152	2002-07-28	07:11
1110	35	e^-	302	152	2002-07-28	08 :01
1111	35	e^-	302	152	2002-07-28	08 :15
1112	35	e^-	302	152	2002-07-28	08 :21
1113	35	e^-	302	152	2002-07-28	09 :21
1114	120	e^-	302	152	2002-07-28	10 :32
1120	180	e^-	869	188	2002-07-28	13 :01
1121	180	e^-	302	152	2002-07-28	13 :18
1122	180	e^-	302	152	2002-07-28	13 :28
1123	180	e^-	302	152	2002-07-28	13 :54
1124	180	e^-	302	152	2002-07-28	14 :21
1125	180	e^-	302	152	2002-07-28	14 :47
1126	180	e^-	302	152	2002-07-28	15 :17
1127	180	e^-	302	152	2002-07-28	15 :43
1128	180	e^-	302	152	2002-07-28	16 :09
1164	120	\bar{p}	305	152	2002-07-29	01 :16
1165	120	$ar{p}$	305	152	2002-07-29	01 :21
1166	120	\bar{p}	305	152	2002-07-29	02 :18
1167	120	$ar{p}$	305	152	2002-07-29	02:45
1168	120	\bar{p}	305	152	2002-07-29	03 :01

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure
1169	120	\bar{p}	305	152	2002-07-29	03 :35
1170	120	$ar{p}$	305	152	2002-07-29	04 :01
1171	120	$ar{p}$	305	152	2002-07-29	04 :25
1172	120	$ar{p}$	305	152	2002-07-29	04 :49
1173	120	$ar{p}$	305	152	2002-07-29	05 :15
1192	180	$ar{p}$	305	152	2002-07-29	11 :03
1193	180	$ar{p}$	305	152	2002-07-29	11 :44
1194	180	$ar{p}$	305	152	2002-07-29	11 :56
1195	180	$ar{p}$	305	152	2002-07-29	12 :01
1196	180	$ar{p}$	305	152	2002-07-29	12 :21
1197	180	$ar{p}$	305	152	2002-07-29	12 :31
1198	180	$ar{p}$	305	152	2002-07-29	12 :34
1199	180	$ar{p}$	305	152	2002-07-29	13 :07
1200	180	\bar{p}	305	152	2002-07-29	13 :04
1201	180	$ar{p}$	305	152	2002-07-29	13 :45
1202	180	\bar{p}	305	152	2002-07-29	14 :24
1203	180	\bar{p}	305	152	2002-07-29	14 :49
1204	180	\bar{p}	305	152	2002-07-29	16 :54
1205	180	\bar{p}	305	152	2002-07-29	17 :03
1206	180	\bar{p}	305	152	2002-07-29	17 :53
1208	180	\bar{p}	305	134	2002-07-29	18 :05
1210	180	\bar{p}	305	116	2002-07-29	19:02
1211	180	\bar{p}	305	170	2002-07-29	19:43
1212	180	\bar{p}	323	152	2002-07-29	20 :02
1213	50	e^-	323	134	2002-07-29	21 :19
1214	3	e^-	305	134	2002-07-29	21 :49
1215	50	e^-	248	80	2002-07-29	23 :05
1216	50	e^-	242	80	2002-07-29	23 :51
1218	50	e^-	251	80	2002-07-30	00 :05
1219	50	e^-	260	80	2002-07-30	00 :18
1220	50	e^-	269	80	2002-07-30	00 :34
1221	50	e^-	278	80	2002-07-30	01:09
1222	50	e^-	287	80	2002-07-30	01 :25
1224	50	e^-	296	80	2002-07-30	01 :38
1225	50	e^-	305	80	2002-07-30	01 :51
1226	50	e^-	314	80	2002-07-30	02 :11
1227	50	e^-	323	80	2002-07-30	02:31
1228	50	e^-	332	80	2002-07-30	02:46
1230	50	e^-	341	80	2002-07-30	03 :01
1231	50	e^-	350	80	2002-07-30	03 :16
1232	50	e^-	359	80	2002-07-30	03 :32
1242	50	e^-	242	89	2002-07-30	06 :27
1243	50	e^-	242	98	2002-07-30	06 :46

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Run	Energie (GeV)	Particule	x	у	Date	Heure	
1244	50	e^-	242	107	2002-07-30	07 :03	
1245	50	e^-	242	116	2002-07-30	07 :14	
1246	50	e^-	242	125	2002-07-30	07:29	
1247	50	e^-	242	134	2002-07-30	07:43	
1248	50	e^-	242	143	2002-07-30	07 :56	
1249	50	e^-	242	152	2002-07-30	08 :11	
1250	50	e^-	242	161	2002-07-30	08 :24	
1251	50	e^-	242	170	2002-07-30	08 :47	
1252	50	e^-	242	179	2002-07-30	09:01	
1253	50	e^-	242	188	2002-07-30	09:24	
1254	50	e^-	242	197	2002-07-30	09:38	
1255	50	e^-	251	197	2002-07-30	09 :53	
1256	100	$ar{p}$	305	190	2002-07-30	13 :38	

Tab. A.2: Ensemble des runs physiques utilisés dans ce travail de thèse (suite).

Annexe B AMSFS : informations techniques

B.1 Structure

Fig. B.1: Le diagramme de classe UML du simulateur rapide.

Le développement du AMSFS a été mené de la manière la plus rigoureuse possible en suivant les règles de la méthode UML [151] pour garantir que le code soit à la fois efficace et évolutif. Le code est abondamment documenté.

Le code permet de représenter virtuellement n'importe quel détecteur spatial et il pourrait par exemple être adapté très facilement pour tester la réponse de GLAST [152]. Pour cela, il suffirait de changer les formules de la surface effective qui sont définies dans le fichier de configuration.

Comme le montre le diagramme de classe simplifié de la figure B.1, le simulateur rapide consiste en plusieurs objets, chacun représentant un élément de la simulation.

L'objet TParameters regroupe tous les paramètres de configuration de la simulation. Dès qu'il est construit, il va lire le fichier de configuration amsfs.conf.

Ce fichier de configuration, dont un exemple est reproduit en annexe B.3, permet à l'utilisateur de paramétrer la simulation sans pour autant avoir à recompiler tout le code. On peut agir sur les paramétrisations de surface effective de chaque détecteur, fixer un ou plusieurs intervalles d'intégrations ou définir un ensemble de sources. On peut aussi choisir d'afficher les résultats à l'écran ou de les stocker dans un fichier ROOT.

TDetector représente un détecteur, ou un sous-détecteur dans le cas des expériences constituées de plusieurs modules. Cette classe contient la paramétrisation de la surface effective.

L'objet TExpositionMap représente une carte d'exposition en coordonnées galactiques.

TSource représente une source astrophysique, avec son spectre et ses coordonnées galactique (l, b).

La classe TCegret hérite de la classe TSource et sert d'interface entre le AMSFS et une base de donnée contenant les 271 sources du 3^e catalogue EGRET [153]. ROOT possède en effet une interface avec le système de gestion de bases de données MySQL [154].

Le catalogue EGRET ne donne pas directement le flux différentiel des sources mais leur flux intégré et leur indice spectral. On est dans le cas d'un spectre en loi de puissance de la forme :

$$\mathcal{F}(E) = \mathcal{F}_0 \ E^{-\alpha}.\tag{B.1}$$

Comme le flux intégré est défini par

$$F = \int_{E_{th}}^{\infty} \mathcal{F}_0 \ E^{-\alpha}, \tag{B.2}$$

on peut facilement obtenir \mathcal{F}_0 :

$$\mathcal{F}_0 = F \; \frac{\alpha - 1}{E_{th}^{1 - \alpha}}.\tag{B.3}$$

Les objets TProtonBck et TGammaBck représentent respectivement les fonds proton et gamma (galactique et extragalactique). TProtonBck est encore en phase de test au moment de la rédaction de ce mémoire, c'est pourquoi nous ne donnons aucun résultat du AMSFS concernant le fond proton dans le chapitre 7.

L'objet TFastSimulator représente le simulateur rapide lui-même. Comme TParameters, une seule instance de cet objet existe lors d'une simulation et les autres objets peuvent y accéder à l'aide d'un pointeur global. TFastSimulator peut contenir plusieurs objets de type TSource, TExpositionMap ou TDetector. Il permet de contrôler la simulation.

B.2 Utilisation

Le AMSFS peut fonctionner de deux manières. Lorsque le code est compilé, une librairie dynamique est construite qui permet d'utiliser le simulateur en mode interprété, dans une session ROOT. Un exécutable est aussi créé pour lancer le simulateur de manière indépendante.

Pour illustrer la simplicité d'utilisation du AMSFS, nous allons montrer l'exemple d'un script¹ et l'expliquer pas à pas. Ce script permet de calculer le nombre de photons détectés par le calorimètre et le trajectographe d'AMS pour deux sources du 3^e catalogue EGRET.

¹Programme destiné à être interprété par CINT, l'interpréteur C++ de ROOT. Il existe des programmes destinés à être interprétés et d'autre qui sont compilés.

B.2.1 Chargement de la librairie et des paramètres d'entrée

La première chose à faire dans le script est de charger la librairie qui a pour nom libTFS.so :

```
if(!TClassTable : :GetDict("TFastSimulator"))
gSystem->Load("libTFS.so");
```

Le test if de la première ligne permet d'éviter que la librairie ne soit chargée à plusieurs reprises si on exécute plusieurs fois le script.

Maintenant que la librairie est chargée, ROOT connaît tous les objets qui y sont définis et ils peuvent être utilisés directement. Il est possible de construire l'objet TParameters qui contiendra toutes les variables de configuration du simulateur :

TParameters par;

B.2.2 Déclaration des détecteurs

Toutes les caractéristiques des détecteurs sont stockées dans le fichier de configuration. Dans ce fichier, les détecteurs sont repérés par des numéros : 1 pour ECAL et 2 pour le STD. Pour déclarer les détecteurs, il suffit d'écrire

Pour declarer les détecteurs, il suffit d'écriré

```
// - ECAL
TDetector *Ecal = new TDetector(1);
// - TRACKER
TDetector *TRK = new TDetector(2);
```

Dès lors, les surfaces effectives paramétrisées, qui dépendent de l'angle d'incidence et de l'énergie, sont stockées dans des histogrammes à deux dimensions.

B.2.3 Déclaration des sources

Il faut maintenant définir les sources. Nous allons utiliser deux sources du catalogue EGRET. Les sources sont repérées par leur référence dans le catalogue.

Les paramètres de connexion à la base MySQL (nom d'utilisateur, mot de passe) sont donnés dans le fichier de configuration.

```
TCegret *s1 = new TCegret("J0534+2200"); // Crabe
TCegret *s2 = new TCegret("J0834-4511"); // Vela
```

B.2.4 Lancement de la simulation

Avant de lancer la simulation, il faut déclarer un objet TFastSimulator et charger les sources, les détecteurs et les cartes d'exposition.

On déclare l'objet de la manière habituelle :

```
TFastSimulator fs;
```

Ensuite, on charge les détecteurs et les cartes d'exposition :

```
// Les détecteurs
fs < Ecal;
fs < TRK;
// Les cartes d'exposition
fs.AddSkyMapsFromFile();</pre>
```

La fonction AddSkyMapFromFile récupère en fait les cartes d'exposition dans un fichier ROOT dont le nom est spécifié dans le fichier de configuration.

Les sources sont chargées comme les détecteurs :

Enfin, on lance la simulation :

fs.Run();

Pendant l'exécution, le simulateur calcule le nombre de photons détectés pour chaque source et chaque détecteur. Si l'utilisateur a défini plusieurs bandes d'énergie dans le fichier de configuration, les résultats sont calculés pour toutes les bandes d'énergie spécifiées.

Le fichier de configuration (amsfs.conf) est d'une importance capitale pour la simulation puisque c'est lui qui contient tous les paramètres d'entrée. Pour qu'un exemple de ce fichier figure dans ce mémoire sans pour autant alourdir sa lecture, nous en donnons une copie dans la section suivante.

B.3 amsfs.conf

Voici une copie partielle du fichier de configuration du simulateur rapide d'AMS- γ . Les paramètres concernant le calcul des fonds gamma et proton ne sont pas reportés. Les lignes commençant par '#' sont ignorées lors de la lecture du fichier.

```
1
  # $Id: amsfs.conf,v 1.42 2005/01/27 15:09:29 bolmont Exp $
   ## AMSFS main configuration file. ##
  ## J. Bolmont, 10/21/2003.
                        ##
  5
   *****
   # Experiment Name
10
                   AMS
  amsfs.kEXP_NAME:
   # Options
15
  amsfs.kVERBOSE:
                   NO
   amsfs.kUSE_DB:
                   YES
   *****
   # Exposition maps location
20
  # The ROOT file containing exposition maps must be in
   # the directory $AMSFS/data/
```

amsfs.kEXPO_MAPS: expo-time.tree.root

B.3. amsfs.conf

```
25
    *****
    # Output file
    # If the parameter amsfs.kOUTPUT_FILE is not set, all
    # results are written on the standard output.
    # If it is set, the results are written in a ROOT file
30
   # in $AMSFS.
    # amsfs.kOUTPUT_FILE:
                           output.root
    35
    # Catalogs : Connexion to the Data Base
    amsfs.kDB_NAME:
                          mysql://gamsv01.in2p3.fr/ams
    amsfs.kDB_USER:
                          amsfs_user
    amsfs.kDB_PASS:
                          ams2005iss
40
    *****
    # Energy and angle ranges :
    #
    # NB : all energies are expressed in GeV !
45
    # Energy range in GeV.
    # Incident angle range in deg.
    amsfs.kENERGY_RANGE:
                          0.01, 1000
50
   amsfs.kINCANGLE_RANGE:
                         120, 180
    # Binning in Cos(angle) and Log10(energy).
    # WARNING !
    # We recommend the use of numbers lower than 10000
    # and greater than 100. 1000 is OK.
55
    amsfs.kENERGY_BINNING:
                          2000
    amsfs.kINCANGLE_BINNING: 2000
60
  # Detectors :
    # Effective area is defined separatly for each detector.
    # It is assumed to be the product of an energy-dependant
    # part and an angular-dependant part :
65
                     A1(x) * A2(psi)
    #
                     _____
    # EffArea(x,psi) =
    #
                         A1(x0)
    # where x = log10(E) and psi = Cos(theta),
    # e.g. x0 = log10(E0).
   # EO is defined by kNORM_ENERGY_P_*.
70
    # In the formula kA1_FORM_*, [0], [1], etc. are
```

```
# coefficients. These coefficients are defined either
     # directly in the formula or with parameters given by
        kDET_*_P_*:
                              [0], [1], [2]
     #
     # THRESH : energy threshold
75
     # ANGRES : angular resolution
     #
     # NB : all energies are expressed in GeV !
80
     # Number of detectors
     amsfs.kDET_NUMBER:
                             2
     # Parameters for detector 1
     amsfs.kDET_NAME_1:
                             ECAL
85
     amsfs.kA1_FORM_1:
                             10000*[0]* [...]
     amsfs.kA2_FORM_1:
                             10000*[0]/ [...]
     amsfs.kDET_A1_P_1:
                             0.111, 1.62, 0.62
                             0.1494, -0.951, 0.010
     amsfs.kDET_A2_P_1:
     amsfs.kDET_ANGRES_P_1:
                               0.9, 8.5
90
     amsfs.kNORM_ENERGY_P_1:
                             50
     amsfs.kDET_THRESH_1:
                             2
     # Parameters for detector 2
     amsfs.kDET_NAME_2:
                             TRK
                             10000*[0]* [..]
95
     amsfs.kA1_FORM_2:
     amsfs.kA2_FORM_2:
                             10000*[0]/ [..]
     amsfs.kDET_A1_P_2:
                             0.098, 1.39, 0.82
     amsfs.kDET_A2_P_2:
                             0.041, -0.79, 0.057
                               0.015, 1.17
     amsfs.kDET_ANGRES_P_2:
100
     amsfs.kNORM_ENERGY_P_2:
                             32
     amsfs.kDET_THRESH_2:
                             1
     # Sources :
105
     # Here, you can define custom sources using the DB.
     # Used by TFastSimulator::AddSourcesFromDB().
     amsfs.kSRC_CAT_NAME:
                             egret_cat
     amsfs.kSRC_SQL_QUERY:
                             F > 50
110
     # Integration :
     # The next variable can be used to specify (an) integration
     # interval(s) in energy.
     # For example if you want to perform the integration between
115
     # 1 and 10 GeV, just use :
     # amsfs.kINT_INTERVAL:
                                      1, 10
     # If you want to integrate over several bands of energy, use :
```

	#	amsfs.kINT_INTERVAL: 1, 10, 20, 50
120	#	This will compute results for the bands 1-10 GeV, 10-20 GeV
	#	and 20-50 GeV.
	#	If you want to use bands like 1-10 GeV and 5-20 GeV, use :
	#	amsfs.kINT_INTERVAL: 1, 10, 5, 20
	#	In this situation, the program will compute in addition
125	#	the results for the band 5-10 GeV.
	#	If you don't define amsfs.kINT_INTERVAL, the integration
	#	will use the energy range from the detector threshold to the
	#	maximum energy of amsfs.kENERGY_RANGE.
	#	WARNING !
130	#	Be sure that the integration range is greater than the
	#	width of the bin of energy !!

amsfs.kINT_INTERVAL: 1, 1000

Le fichier de configuration du simulateur rapide d'AMS- γ permet de définir tous les paramètres importants de la simulation.

Au début, on définit deux options. L'option kVERBOSE permet d'afficher plus ou moins d'informations lors de l'exécution du programme. L'option kUSE_DB active ou désactive la connexion avec la base de données. En effet, l'utilisateur n'est pas forcément en mesure d'utilser la base, ou bien il peut ne pas en avoir besoin.

kEXPO_MAPS indique le nom du fichier où sont stockées les cartes d'exposition. Rappelons ici qu'il y a en tout dix cartes d'exposition pour différents intervalles d'angle d'incidence.

Si la constante kOUTPUT_FILE est définie, les résultats sont écrits directement dans un fichier ROOT qui peut être réutilisé par la suite ou conservé. Tous les paramètres d'entrée sont écrits dans le fichier de sortie pour savoir avec quels réglages les résultats ont été obtenus.

kDB_NAME, kDB_USER et kDB_PASS permettent de définir les paramètres de connexion à la base MySQL.

kENERGY_RANGE et kINCANGLE_RANGE définissent les intervalles de définition de la surface effective respectivement pour l'énergie et pour l'angle.

kENERGY_BINNING et kINCANGLE_BINNING fixent le binning de l'histogramme utilisé pour représenter la surface effective.

Ensuite, on trouve les paramètres relatifs aux détecteurs. Les paramétrisations des surfaces effectives sont définies individuellement pour chaque détecteur. On donne d'abord les formules utilisées (kA1_FORM) puis la valeur des paramètres (kDET_A1_P). A1 et A2 représentent les valeurs des paramètres A_1 et A_2 définis par les équations 7.10 et 7.12. kNORM_ENERGY_P donne la valeur de E_0 dans l'équation 7.9. Enfin, kDET_THRESH donne le seuil en énergie.

kSRC_CAT_NAME et kSRC_SQL_QUERY peuvent être utilisés pour sélectionner des sources du 3^e catalogue EGRET avec un critère particulier. Ici, on sélectionne par exemple toutes les sources qui ont un flux intégré supérieur à 50×10^{-8} cm⁻²s⁻¹ (E > 100 MeV).

Enfin, kINT_INTERVAL permet de spécifier un ou plusieurs intervalles d'intégration en énergie.

Annexe C

La transformée en ondelettes

La transformée en ondelettes complète la transformée de Fourier en prenant en compte l'information temporelle. En effet, elle permet la représentation des signaux dans le plan temps-fréquence alors que la transformée de Fourier n'est qu'une représentation fréquencielle.

Dans ce chapitre, nous allons aborder l'analyse en ondelettes le plus simplement et rigoureusement possible. Nous nous limiterons à citer les théorèmes qui nous serons utiles sans jamais les démontrer. En premier lieu, nous montrerons les limites de la transformée de Fourier, ce qui nous permettra d'introduire progressivement la transformée en ondelettes.

C.1 Introduction

C.1.1 Limites de la transformée de Fourier

Considérons un signal f continu dans le temps. Pour peu que f soit intégrable, on peut déterminer sa transformée de Fourier (FT, *Fourier Transform*) [155]. \hat{f} par la formule suivante :

$$\hat{f}(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt.$$
(C.1)

Cela revient à corréler f avec une sinusoïdale. En fait, on peut dire que $\hat{f}(\omega)$ mesure si f oscille beaucoup à la fréquence ω .

L'inconvénient majeur de la FT¹ est qu'il n'est pas possible de localiser une fréquence particulière dans le temps. Si par exemple un signal S a une fréquence ω_1 entre deux instants t_1 et t_2 et une fréquence ω_2 entre t_2 et t_3 , sa FT \hat{S} permettra de dire que S contient deux composantes en fréquence (ω_1 et ω_2) mais pas que ω_1 vient avant ω_2 (cf. Fig. C.1, page suivante).

On peut facilement s'imaginer que ce problème pourrait être résolu si on pouvait faire une transformée de Fourier localisée sur chacun des intervalles $[t_1, t_2]$ et $[t_3, t_4]$. C'est ce que permet de faire la transformée de Fourier par fenêtres.

¹Par la suite, nous utiliserons toujours les acronymes anglo-saxons pour désigner les différentes transformations d'un signal.

Fig. C.1: Transformée de Fourier d'un signal comportant deux fréquences différentes. (a) Le signal de départ est sinusoïdal avec une fréquence de 20 Hz entre 0 et π et 60 Hz entre π et 2π . (b) Module de la FT du signal (a). La largeur des pics ainsi que les oscillations proviennent des effets de bord en t = 0 et $t = 2\pi$ et de la discontinuité du signal en $t = \pi$.

Fig. C.2: Transformées de Fourier par fenêtre d'un même signal avec deux largeurs de fenêtres différentes. (a) Le signal de départ est sinusoïdal avec une fréquence de 20 Hz entre 0 et π et 60 Hz entre π et 2π . (b) WFT du signal (a) avec une fenêtre fine. (c) WFT du signal (a) avec une fenêtre large. L'échelle de couleur va du noir au rouge et représente la valeur des coefficients $Sf(u, \xi)$.

C.1.2 La transformée de Fourier par fenêtres

Introduite en 1946 par Gabor [156], la transformée de Fourier par fenêtres (WFT, *Windowed Fourier Transform*), encore appelée transformée de Fourier à courte période (STFT, *Short Time Fourier Transform*), consiste à multiplier le signal à analyser par une fonction g bien choisie avant d'appliquer la transformée de Fourier. Cette fonction g, appelée *fenêtre*, est une fonction réelle paire (c'est-à-dire que g(t) = g(-t)) normalisée à 1, que l'on peut translater d'une durée u et moduler par une fréquence ξ :

$$g_{u,\xi}(t) = e^{i\xi t}g(t-u). \tag{C.2}$$

Multiplier une fonction f par g revient donc à ne conserver qu'une partie de f au voisinage de t = u. Si on prend la FT du produit de f par la conjuguée de $g_{u,\xi}$, on obtient la WFT définie par :

$$Sf(u,\xi) = \int_{-\infty}^{+\infty} f(t)g(t-u)e^{-i\xi t}dt = \int_{-\infty}^{+\infty} f(t)g_{u,\xi}^{*}(t)dt.$$
 (C.3)

Si nous reprenons l'exemple de la figure C.1, nous pouvons constater que notre problème est résolu. En effet, en utilisant une fonction g d'une largeur bien choisie, il est possible de montrer que c'est la fréquence ω_1 qui vient avant la fréquence ω_2 (cf. Fig. C.2). Sur la figure, on remarque bien qu'avec une fenêtre fine l'instant du changement de fréquence est repéré de manière très précise alors que les fréquences sont déterminées de manière assez floue (b). Les fréquences sont mieux définies avec une fenêtre large mais le temps est moins bien résolu (c).

Derrière l'expression "largeur bien choisie" du paragraphe précédent se cache le problème essentiel de la WFT : la taille de la fenêtre est fixe. Les résolutions en temps et en fréquence ne dépendent pas de u ou de ξ mais seulement de la forme de la fonction g :

- plus la fenêtre est large, plus la précision en fréquence est bonne;

- plus la fenêtre est fine, plus la précision en temps est bonne.

Autrement dit, pour une largeur de fenêtre donnée, il est impossible d'étudier certaines parties d'un signal avec un bonne résolution en temps et d'autres parties avec une bonne résolution en fréquence. Ceci est une forme du principe d'Heisenberg, illustrée par la figure $C.3^2$.

C.2 Transformées en ondelettes

Tout comme la WFT, la transformée en ondelettes utilise une fenêtre. Cette fenêtre est appelée *ondelette*.

A l'instar de la fonction g de la section précédente, on peut translater l'ondelette d'une certaine durée u. La nouveauté, c'est que l'on peut dilater et contracter l'ondelette d'un facteur s, lié à la fréquence et appelé *échelle*.

Dans cette section, nous commencerons par décrire la transformée en ondelettes continue (CWT, *Continuous Wavelet Transform*) puis nous passerons à la transformée en ondelettes discrète (DWT, *Discrete Wavelet Transform*).

²Cette figure, ainsi que quelques autres dans ce chapitre, est extraite du livre de Stéphane Mallat [157], qui est un ouvrage de référence sur l'analyse en ondelettes pour le traitement du signal. Les figures de ce livre sont libres d'utilisation.

Fig. C.3: Boîtes d'Heisenberg de deux fenêtres $g_{u,\xi}$ et $g_{v,\gamma}$ obtenues à partir de la même fonction de base g. L'axe des abscisses représente le temps t et l'axe des ordonnées la fréquence ω . Dans le domaine fréquentiel, la résolution est donnée en calculant la transformée de Fourier \hat{g} de g. g étant choisie, la surface des boîtes est la même quelque soit les valeurs de (u, ξ) et (v, γ) . D'après [157].

C.2.1 Définition de la transformée en ondelettes continues

Comme annoncé ci-dessus, la fenêtre dans le cas de la WT s'appelle une *ondelette*. Il s'agit en effet d'une *petite onde* ou d'une *petite vague* : c'est une fonction à support compact (c'està-dire qu'elle est localisée dans le temps) et qui oscille. Mais regardons les choses de manière plus précise.

L'ondelette ψ est une fonction appartenant à $\mathbf{L}^2(\mathbb{R})$, l'ensemble des fonctions réelles d'énergie finie. Ainsi,

$$\int_{-\infty}^{+\infty} |\psi(t)|^2 dt < +\infty.$$
(C.4)

De plus, ψ est de moyenne nulle :

$$\int_{-\infty}^{+\infty} \psi(t)dt = 0.$$
 (C.5)

Elle est normalisée et choisie de manière à être au voisinage de t = 0.

On peut générer une famille de fonctions ondelettes en dilatant ψ par un facteur s (l'échelle) et en la translatant d'un facteur u:

$$\psi_{u,s}(t) = \frac{1}{\sqrt{s}} \ \psi\left(\frac{t-u}{s}\right). \tag{C.6}$$

Comme toutes les fonctions $\psi_{u,s}$ sont obtenues à partir de ψ , on appelle cette fonction l'*ondelette mère*.

La dérivée seconde de la gaussienne est une fonction ondelette. D'équation :

$$\psi(t) = \frac{2}{\pi^{1/4}\sqrt{3\sigma}} \left(\frac{t^2}{\sigma^2} - 1\right) \exp\left(\frac{-t^2}{2\sigma^2}\right),\tag{C.7}$$

Fig. C.4: L'ondelette *chapeau mexicain* d'après l'équation C.7 avec $\sigma = 1$. D'après [157].

on l'appelle chapeau mexicain en raison de sa forme (cf. Fig. C.4).

L'échelle *s* a exactement le même rôle que l'échelle d'une carte géographique. Plus l'échelle est petite, plus elle permet d'analyser un signal en détail. Cela correspond aux hautes fréquences. Si l'échelle est grande, on a un aperçu plus global du signal, c'est-à-dire que l'on étudie plus les basses fréquences.

La transformée en ondelette d'une fonction $f \in \mathbf{L}^2(\mathbb{R})$ au temps u et à l'échelle s est définie par :

$$Wf(u,s) = \int_{-\infty}^{+\infty} f(t) \frac{1}{\sqrt{s}} \psi^*\left(\frac{t-u}{s}\right) dt = \int_{-\infty}^{+\infty} f(t)\psi^*_{u,s}(t) dt.$$
 (C.8)

On peut dire que Wf(u, s) mesure les variations de f au voisinage de u, ce voisinage ayant une taille proportionnelle à s.

Nous avons vu qu'avec la transformée de Fourier par fenêtres, les résolutions en temps et en fréquence sont fixées par le choix de la fenêtre. Ce n'est plus le cas avec la WT. Le fait de changer l'échelle fait varier les résolutions en temps et en fréquence (cf. Fig. C.5, page 214) :

– plus s est petite, meilleure est la précision en temps;

- plus s est grande, meilleure est la précision en fréquence.

Comme changer la valeur de *s* revient à changer la résolution à laquelle on analyse le signal, on dit que la WT est un outil d'analyse *multi-résolution*.

La figure C.6 montre un exemple de transformée en ondelettes continue pour un signal comportant trois composantes fréquentielles.

C.2.2 Un mot sur la CWT de signaux discrets

En pratique, les données que nous devons analyser sont souvent échantillonnées. Supposons par exemple que la fonction f est définie sur l'intervalle [0,1] par N échantillons. Il est facile de s'imaginer qu'essayer d'analyser f à une échelle inférieure à la largeur d'un échantillon n'a pas de sens. De même, l'échelle ne peut être plus grande que la largeur de l'intervalle. Ceci implique que

$$N^{-1} < s < 1. (C.9)$$

La transformée en ondelettes du signal f[n] défini pour N échantillons est calculée à des échelles $s = a^j$ où $a = 2^{1/\nu}$. Ainsi, pour chaque octave $[2^j, 2^{j+1}]$, on a ν échelles intermédiaires. On peut définir une ondelette discrète par

$$\psi_j[n] = \frac{1}{\sqrt{a^j}} \psi\left(\frac{n}{a^j}\right). \tag{C.10}$$

Fig. C.5: Boîtes d'Heisenberg de deux ondelettes ψ_{u_0,s_0} et $\psi_{u,s}$. L'axe des abscisses représente le temps t et l'axe des ordonnées la fréquence ω . Dans le domaine fréquentiel, la résolution est donnée en calculant la transformée de Fourier $\hat{\psi}$ de ψ . Lorsque l'échelle augmente, la résolution en fréquence diminue et la résolution en temps augmente. L'aire des boîtes reste constante et égale à $\sigma_t \sigma_{\omega}$. D'après [157].

Fig. C.6: Exemple d'une transformée en ondelettes continue. (a) Le signal analysé comporte trois composantes en fréquence. (b) CWT du signal (a). La valeur des coefficients $|Wf(u,s)|^2$ est représentée par une échelle de couleur allant du noir au rouge. Le paramètre a est relié à l'échelle s de manière à ce que $\log_2 a$ varie comme $\log_2 s$ à une constante additive près. Ce genre de figure est aussi appelé *scalogramme*.

Pour éviter les effets de bords, on donne une période $N \ge f$ et $\ge \psi^3$. La transformée en ondelette de f est donnée par une convolution circulaire :

$$Wf[n, a^{j}] = \sum_{m=0}^{N-1} f[m]\psi_{j}^{*}[m-n] = f \circledast \bar{\psi}_{j}[n], \qquad (C.11)$$

où $\bar{\psi}_j[n] = \psi_j^*[-n].$

Cette convolution circulaire est calculée avec l'algorithme de la transformée de Fourier rapide, ce qui permet une complexité ⁴ optimale et donc un temps de calcul réduit.

Pour finir cette partie, faisons remarquer que la CWT de signaux discrets dont nous venons de parler ne doit pas être confondue avec la transformée en ondelettes discrète. Nous verrons en effet que la DWT devrait plutôt être appelée *décomposition sur une base orthonormée d'ondelettes*.

C.2.3 Définition de la transformée en ondelettes discrètes

En 1910, le Hongrois Alfréd Haar publie un résultat intéressant [158]. Il montre qu'il est possible de construire une fonction ψ constante par morceaux qui par dilatation et translation donne une base orthonormée de $L^2(\mathbb{R})$.

Cette fonction, l'ondelette de Haar, est définie par

$$\psi(t) = \begin{cases} 1 & \text{si } 0 \le t < 1/2 \\ -1 & \text{si } 1/2 \le t < 1 \\ 0 & \text{sinon} \end{cases}$$
(C.12)

et elle forme la base suivante :

$$\left\{\psi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t-2^j n}{2^j}\right)\right\}_{(j,n)\in\mathbb{Z}^2}$$
(C.13)

où l'échelle est donnée par 2^{j} , tandis que n permet de translater l'ondelette.

Tout signal f d'énergie finie peut être décomposé sur la base $\{\psi_{i,n}\}_{(i,n)\in\mathbb{Z}^2}$:

$$f = \sum_{j=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$
 (C.14)

où $\langle f, \psi_{j,n} \rangle$ représente le produit scalaire de f par $\psi_{j,n}$.

L'inconvénient majeur de l'ondelette de Haar est qu'elle est constante par morceaux. Elle n'est pas optimisée pour les signaux continus. Il est donc nécessaire d'introduire d'autres bases d'ondelettes.

Approximation multirésolution

Dans la formule C.14, la somme partielle $\sum_{n=-\infty}^{\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$ peut être interprétée comme la différence entre deux approximations de f aux échelles 2^{-j+1} et 2^{-j} .

³On a donc f[N + n] = f[n].

⁴La complexité d'un algorithme mesure la quantité de mémoire ainsi que le temps dont il a besoin pour être exécuté.

Fig. C.7: (a) La fonction d'échelle ϕ et (b) la fonction ondelette ψ symmlet d'ordre 8. D'après [157].

Pour obtenir l'approximation de f à une résolution 2^{-j} donnée, on réalise la projection orthogonale de f sur un espace $\{\mathbf{V}_j\}_{j\in\mathbb{Z}}$. Pour cela, il faut définir une base orthonormée de \mathbf{V}_j telle que pour tout $j \in \mathbb{Z}$,

$$\left\{\phi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \phi\left(\frac{t-n}{2^j}\right)\right\}_{n \in \mathbb{Z}}.$$
(C.15)

On remarque que la base est obtenue à partir des dilatées et translatées d'une fonction ϕ , appelée *fonction d'échelle* (cf. Fig. C.7).

La projection de f sur \mathbf{V}_j est donnée par

$$P_{\mathbf{V}_{j}}f = \sum_{n=-\infty}^{\infty} \langle f, \phi_{j,n} \rangle \phi_{j,n}$$
(C.16)

où le produit scalaire $\langle f, \phi_{j,n} \rangle = a_j[n]$ est en fait une approximation discrète de f à l'échelle 2^j .

La figure C.8 montre l'exemple d'approximations multirésolutions à différentes échelles 2^{j} .

Ondelettes orthogonales

Une des propriétés que les espaces V_j doivent vérifier pour constituer une approximation multirésolution est que

$$\forall j \in \mathbb{Z}, \ \mathbf{V}_{j+1} \subset \mathbf{V}_j. \tag{C.17}$$

Ceci veut dire qu'une approximation à la résolution 2^{-j} contient l'information suffisante pour calculer l'approximation à la résolution inférieure suivante 2^{-j-1} . Donc, on peut écrire

$$P_{\mathbf{V}_{i-1}}f = P_{\mathbf{V}_i}f + P_{\mathbf{W}_i}f \tag{C.18}$$

où $P_{\mathbf{W}_j}f$ donne les *détails* de f qui apparaissent à l'échelle 2^{j-1} mais disparaissent à l'échelle 2^j .

Fig. C.8: Une fonction f(t) et plusieurs approximations multirésolutions à des échelles $2^{-9} \le 2^j \le 2^{-4}$. Chaque approximation consiste en un ensemble de coefficients $a_j[n]$ représentés par des barres. D'après [157].

 \mathbf{W}_{j} est un espace orthonormé qui est le complément orthogonal de \mathbf{V}_{j} dans \mathbf{V}_{j-1} :

$$\mathbf{V}_{j-1} = \mathbf{V}_j \oplus \mathbf{W}_j,\tag{C.19}$$

et de la même manière que nous avons une base de V_j , il est possible de trouver une base orthonormée de l'espace W_j en dilatant et translatant une ondelette ψ (cf. Fig. C.7). Ainsi, pour toute échelle 2^j ,

$$\left\{\psi_{j,n}(t) = \frac{1}{\sqrt{2^j}} \psi\left(\frac{t-2^j n}{2^j}\right)\right\}_{n \in \mathbb{Z}}$$
(C.20)

est une base orthonormée de \mathbf{W}_j . De plus, pour toutes les échelles, $\{\psi_{j,n}\}_{(j,n)\in\mathbb{Z}^2}$ est une base orthonormée de $\mathbf{L}^2(\mathbb{R})$.

La projection de f sur \mathbf{W}_j s'écrit

$$P_{\mathbf{W}_{j}}f = \sum_{n=-\infty}^{\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}$$
(C.21)

et la décomposition de f sur une base orthogonale d'ondelettes s'écrit

$$f = \sum_{j=-\infty}^{\infty} P_{\mathbf{W}_j} f = \sum_{j=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} \langle f, \psi_{j,n} \rangle \psi_{j,n}.$$
 (C.22)

Les coefficients d'ondelette sont les coordonnées de f dans la base $\{\psi_{j,n}\}_{(j,n)\in\mathbb{Z}^2}$. Ils sont notés $d_j[n] = \langle f, \psi_{j,n} \rangle$.

Fig. C.9: Décomposition de la fonction f(t) sur une base orthonormée d'ondelettes à différentes échelles. Chaque barre représente la valeur de $d_j[n]$. En haut, on montre l'approximation à l'échelle 2⁻⁵. D'après [157].

DWT de signaux discrets

En pratique, la décomposition ne se fait jamais sur un nombre infini d'échelles. Les sommes de la formule précédente sont donc tronquées et il est nécessaire d'introduire la fonction d'échelle pour reconstruire la fonction de départ.

Soit X cette fonction, définie sur [0,1] par N échantillons. L'échelle 2^j varie de $2^L = N^{-1}$ jusqu'à $2^J < 1$ et on a

$$X = \sum_{j=L+1}^{J} \sum_{m=0}^{2^{-j}} \langle X, \psi_{j,n} \rangle \psi_{j,n} + \sum_{m=0}^{2^{-J}} \langle X, \phi_{j,n} \rangle \phi_{j,n}.$$
 (C.23)

La figure C.9 montre la décomposition d'un signal sur une base orthonormée d'ondelettes.

C.3 Ondelettes est analyse de signaux

Dans cette partie, nous présentons les méthodes que nous utiliserons par la suite pour analyser les courbes de lumières de plusieurs sursauts gamma.

C.3.1 DWT et débruitage

Débruiter un signal, c'est en quelque sorte éliminer les détails les plus fins. La transformée en ondelette discrète permet d'accéder facilement à ces détails et constitue ainsi un outil très utile pour éliminer le bruit d'un signal.

Méthode

Le bruit engendre des coefficients d'ondelette petits aux petites échelles.

- La méthode de base pour débruiter un signal est donc très simple :
- Prendre la DWT du signal à débruiter ;
- Appliquer une transformation aux coefficients d'ondelette. En général, on leur applique un seuil;
- Prendre la DWT inverse pour retrouver le signal débruité.

Soit un signal X bruité. Il peut s'écrire comme la somme d'un signal f non bruité et d'un bruit W :

$$X[n] = f[n] + W[n] \tag{C.24}$$

On peut montrer qu'un estimateur \tilde{F} de f peut être obtenu par :

$$\tilde{F} = \sum_{j=L+1}^{J} \sum_{m=0}^{2^{-j}} \rho_T \left(\langle X, \psi_{j,n} \rangle \right) \psi_{j,n} + \sum_{m=0}^{2^{-J}} \rho_T \left(\langle X, \phi_{j,n} \rangle \right) \phi_{j,n},$$
(C.25)

où ρ_T est un opérateur de seuil qui modifie les coefficients d'ondelettes selon leur valeur.

Choix du seuil

On peut choisir

$$\rho_T(x) = \begin{cases} x & \text{si } |x| > T \\ 0 & \text{sinon} \end{cases}$$
(C.26)

où T est un paramètre réel. On parle de *seuil dur (hard thresholding)*.

L'autre méthode communément utilisée est celle du *seuil doux (soft thresholding*). Elle améliore l'estimation du signal par rapport au *hard thresholding* et consiste à poser

$$\rho_T(x) = \begin{cases}
x - T & \text{si } x \ge T \\
x + T & \text{si } x \le -T \\
0 & \text{si } |x| < T
\end{cases}$$
(C.27)

Plusieurs méthodes existent pour déterminer au mieux la valeur de T. Le mieux est de le choisir juste au dessus du niveau maximum du bruit. David Donoho et lan Johnstone [159] donnent une expression pour déterminer le seuil T:

$$T = \sigma \sqrt{2 \log_e N} \tag{C.28}$$

où σ est la variance du bruit supposé gaussien et N la taille du signal. σ n'est généralement pas connu a priori. On en fourni une estimation $\tilde{\sigma}$ avec la méthode de la médiane.

Méthode de la médiane

A partir des coefficients d'ondelette à l'échelle la plus fine, on peut estimer la variance du bruit [159].

X possède N/2 coefficients d'ondelette à l'échelle $2^l = 2N^{-1}$. La médiane des coefficients d'ondelette à l'échelle la plus fine est donc

$$M_X = \mathsf{Med}\left(\{|\langle X, \psi_{l,m} \rangle|, 0 \le m < N/2\}\right) = |\langle X, \psi_{l,N/4} \rangle|.$$
(C.29)

Fig. C.10: Débruitage d'un signal par seuillage des coefficients d'ondelette. (a) Un signal présentant des irrégularité et sa transformée en ondelettes discrète obtenue avec l'ondelette Symmlet-4. (b) Le même signal bruité avec un rapport signal sur bruit de 21.9 dB. On remarque que le bruit produit des coefficients de faible amplitude. (c) En appliquant un seuil aux coefficients d'ondelette, et après DWT inverse, on trouve le signal débruité, avec un rapport signal sur bruit de 30.8 dB. D'après [157].

La variance du bruit est alors estimée par

$$\tilde{\sigma} = \frac{M_X}{0.6745}.\tag{C.30}$$

La figure C.10 montre l'exemple d'un signal débruité par la méthode de seuil dur (Eq. C.26) en déterminant T par l'équation C.28 et la variance du bruit à l'aide de la formule ci-dessus.

C.3.2 CWT et recherche d'extrema

Dans la section C.2.1, nous avons vu que la transformée en ondelettes continue peut mesurer les variations locales d'une fonction. Dans cette partie, nous allons décrire plus précisément comment on peut localiser et caractériser les extrema d'un signal à l'aide de la transformée en ondelettes continues.

Nous commencerons par donner une méthode pour caractériser un extremum, basée sur la notion de régularité lipschitzienne. Nous verrons ensuite comment déterminer la régularité d'un signal en un point à partir de sa transformée en ondelettes continues.

La régularité lipschitzienne

La régularité d'une fonction en un point peut être envisagée de manière très simple : une fonction est régulière en un point ν si on peut l'approcher en ν par un polynôme.

De manière plus formelle, la régularité lipschitzienne se définit par :

Définition 1

- Une fonction f est ponctuellement Lipschitz $\alpha \ge 0$ en ν s'il existe K > 0 et un polynôme p_{ν} de degré⁵ $m = \lfloor \alpha \rfloor$ tels que

$$\forall t \in \mathbb{R}, \ |f(t) - p_{\nu}(t)| \le K |t - \nu|^{\alpha}.$$
(C.31)

- Une fonction f est uniformément Lipschitz α sur [a, b] si elle satisfait l'équation C.31 pour tout $\nu \in [a, b]$, avec K constante indépendante de ν .
- La régularité lipschitzienne de f en ν ou sur l'intervalle [a,b] est la borne supérieure de toutes les valeurs de α telles que f est Lipschitz α .

Dans cette définition, α est appelé *coefficient de Lipschitz*⁶.

Mesurer la régularité avec les ondelettes

Le théorème de Jaffard [160] donne une condition nécessaire et une condition suffisante pour estimer la régularité lipschitzienne à partir de la transformée en ondelettes.

Théorème 1

- Si $f \in L^2(\mathbb{R})$ est Lipschitz $\alpha \leq n$ en ν , alors il existe A tel que

$$\forall (u,s) \in \mathbb{R} \times \mathbb{R}^+, \ |Wf(u,s)| \le As^{\alpha + \frac{1}{2}} \left(1 + \left| \frac{u-v}{s} \right|^{\alpha} \right)$$
(C.32)

– Réciproquement, si $\alpha < n$ n'est pas entier et s'il existe A et $\alpha' < \alpha$ tels que

$$\forall (u,s) \in \mathbb{R} \times \mathbb{R}^+, \ |Wf(u,s)| \le As^{\alpha + \frac{1}{2}} \left(1 + \left| \frac{u-v}{s} \right|^{\alpha'} \right)$$
(C.33)

alors f est Lipschitz α en ν .

Nous disposons maintenant d'un lien entre la régularité ponctuelle d'un signal et la décroissance du module de sa transformée en ondelettes. Toutefois, ce théorème n'est valable que pour une ondelette possédant n moments nuls et n dérivées avec une décroissance rapide.

Moments nuls L'ondelette ψ doit vérifier

$$\int_{-\infty}^{+\infty} t^k \psi(t) dt = 0 \text{ pour } 0 \le k < n.$$
(C.34)

⁵|x| désigne le plus grand entier $n \leq x$.

⁶Parfois aussi coefficient de Hölder.

Dérivée à décroissance rapide Pour tout $0 \le k < n$ et $m \in \mathbb{N}$, il doit exister C_m tel que

$$\forall t \in \mathbb{R}, \ |\psi^{(k)}(t)| \le \frac{C_m}{1+|t|^m}.$$
(C.35)

On peut montrer qu'une ondelette à décroissance rapide a n moments nuls si et seulement si on peut l'écrire sous la forme $\psi(t) = (-1)^n \theta^{(n)}(t)$ où θ est à décroissance rapide. Et dans ce cas, ψ a au plus n moments nuls si et seulement si $\int_{-\infty}^{+\infty} \theta(t) dt \neq 0$.

Nous avons déjà rencontré une telle ondelette : l'ondelette *chapeau mexicain*⁷ (cf. Eq. C.7).

Détections de singularités

Voyons maintenant le dernier théorème dont nous aurons besoin pour préciser la relation entre la transformée en ondelettes et les singularités d'un signal.

Théorème 2

On suppose que ψ est \mathbb{C}^n à support compact, et que $\psi = (-1)^n \theta^{(n)}$ avec $\int_{-\infty}^{\infty} \theta(t) dt \neq 0$. Soit $f \in \mathbb{L}^1[a, b]$. S'il existe $s_0 > 0$ tel que |Wf(u, s)| n'ait aucun maximum local pour $u \in [a, b]$ et $s < s_0$, alors f est uniformément Lipschitz n sur $[a + \varepsilon, b - \varepsilon]$, pour tout $\varepsilon > 0$.

Ce théorème montre qu'il ne peut y avoir de singularité sans maximum local de la transformée en ondelettes dans les échelles fines. Il est donc possible de repérer les extrema d'un signal en calculant sa CWT et en déterminant les modules maximaux.

La figure C.11 montre un graphique des modules maximaux pour un signal présentant de nombreuses singularités. À partir du moment où l'on dispose d'un tel graphique, il est très facile de repérer les singularités du signal. Chacune d'entre elles est en effet repérée par un ensemble de maxima locaux du module de la transformée en ondelettes.

On peut montrer que si l'ondelette est la dérivée d'ordre n d'une gaussienne, alors l'ensemble des maxima locaux est connexe et continu jusqu'aux échelles les plus fines. Cela justifie le choix d'une ondelette comme le *chapeau mexicain*.

Pour terminer, il nous reste à dire qu'il est possible de déterminer l'ordre d'une singularité à l'aide de la CWT en étudiant la décroissance des modules de la transformée en ondelettes lorsque l'échelle diminue. En effet, les théorèmes 1 (étendu à tout l'intervalle) et 2 ont pour conséquence que

$$\log_2 |Wf(u,s)| \le \log_2 A + \left(\alpha + \frac{1}{2}\right) \log_2 s.$$
(C.36)

Il est donc possible de déterminer α graphiquement, en traçant $\log_2 |Wf(u,s)|$ en fonction de log_2s et en déterminant la pente aux petites échelles, c'est-à-dire pour $s < s_0$.

La figure C.12 montre l'exemple de deux modules maximaux pour deux extrema du signal de la figure C.11 (a). La ligne continue correspond à la singularité en t = 0.05 et on trouve un coefficient de Lipschitz égal à 0 en effectuant une approximation linéaire aux petites échelles. Ceci s'explique par le fait qu'en 0.05 le signal est discontinu.

La ligne interrompue correspond au maximum en t = 0.42. Pour cet extremum, on trouve $\alpha + 1/2 \approx 1$ donc la singularité est Lipschitz 1/2.

⁷Il suffit que $\theta(t)$ soit gaussienne (la gaussienne est une ondelette), et de prendre n = 2.

Fig. C.11: CWT et modules maximaux. (a) Le signal de départ. (b) La transformée en ondelette continue. Les valeurs de |Wf(u, s)| sont représentées par une échelle de gris. (c) Les modules maximaux. Chaque courbe correspond à une singularité que l'on suit lorsque l'échelle diminue. D'après [157].

Fig. C.12: Décroissance de $\log_2 |Wf(u, s)|$ le long d'une courbe de maxima pour deux singularités du signal de la figure C.11 (a). La ligne continue correspond à la singularité en t = 0.05. La ligne interrompue correspond au maxima en t = 0.42. D'après [157].

Annexe D

LastWave ou WaveLab?

Dans le chapitre 10, nous avons utilisé deux outils logiciels pour réaliser les transformées en ondelettes nécessaires à l'analyse des courbes de lumière des sursauts gamma.

LastWave [161] est un outil développé au Centre de Mathématiques Appliquées de l'Ecole Polytechnique. Il est gratuit et nous l'avons utilisé pour la transformée en ondelettes continues.

WaveLab [162] a été développé au département de statistiques de l'Université de Stanford par une équipe menée par David Donoho. Ce dernier a beaucoup travaillé sur les méthodes de seuillage des coefficients en ondelettes comme moyen de débruitage ou de compression des données. WaveLab est un module d'analyse en ondelettes qui s'utilise avec MatLab [163]. Il n'est donc pas gratuit dans la mesure où il faut disposer d'une version de MatLab, qui lui est payant. Nous l'avons utilisé pour le débruitage des courbes de lumière.

Chaque outil permet d'effectuer des transformées en ondelettes discrètes et continues; alors pourquoi avoir utilisé deux outils alors qu'un aurait suffi? Nous avons en fait tenu compte des points forts et des points faibles des deux logiciels.

D.1 WaveLab

D.1.1 Avantages, inconvénients

Les avantages de WaveLab sont les suivants :

- c'est un outil gratuit;
- la documentation est d'une grande qualité;
- le débruitage est très facile du fait de l'existence de fonctions dédiées à cette tâche.

Les points négatifs sont les suivants :

- la recherche d'extrema n'est pas du tout immédiate et demande l'écriture d'un code en complément des fonctions réalisant la transformée en ondelettes continues;
- la manière dont est représentée la transformée en ondelette continue n'est pas facile à appréhender;
- MatLab est payant.

D.1.2 La procédure de débruitage

La facilité d'utilisation de WaveLab pour le débruitage est illustrée par l'exemple suivant. Cette fonction lit les courbes de lumière bruitées dans le fichier dont le nom est fname1, effectue le débruitage avec une ondelette Symmlet-10 et un seuil doux et écrit le résultat dans un fichier texte dont le nom est fname2. L est le niveau de décomposition utilisé pour effectuer la DWT.

```
function grb_denoise(fname1, fname2, L)
1
         % Lecture du fichier d'entrée
         fid = fopen(fname1,'r');
5
         if fid < 0,
             error('I was unable to open the dataset you requested !');
             return;
         else
             nd = fscanf(fid, '%g');
10
             fclose(fid);
         end
         % Le vecteur de départ doit être en ligne
         noisy_data = nd';
15
         % Débruitage
         % Seuil doux
         % Estimation de la variance du bruit par la méthode de la médiane
         [n,d] = dyadlength(noisy_data);
20
         qmf = MakeONFilter('Symmlet', 10);
         data = ThreshWave(noisy_data,'S',0,0,sqrt(2*log(n)),L,qmf);
         % Le vecteur de sortie doit être en colonne
         data = data':
25
         % Ecriture du résultat dans le fichier de sortie
         save(fname2, 'data', '-ascii');
```

D.2 LastWave

D.2.1 Avantages, inconvénients

Les avantages de LastWave sont les suivants :

- c'est un outil autonome et gratuit;
- il est facile à l'aide des exemples d'écrire un code pour la recherche d'extrema.

Les inconvénients sont les suivants :

- synthaxe et utilisation assez rébarbative;
- implémenter la technique du seuil doux et la méthode de la médiane est une opération compliquée (cf. point précédent);

- la documentation est déficiente et comporte des erreurs.

Il faut noter ici que les échanges que nous avons pu avoir avec les auteurs de LastWave ont été très positifs mais que nos remarques sur les erreurs de la documentation n'ont donné lieu à aucune correction.

D.2.2 La procédure de recherche des extrema

Ce script permet de rechercher les extrema. Il prend en entrée une courbe de lumière débruitée et renvoie la liste des extrema avec pour chacun d'eux la position, le coefficient de Lipschitz et l'erreur sur ce coefficient. De plus, on précise dans le fichier s'il s'agit d'un minimum ou d'un maximum. L'ondelette utilisée ici est l'ondelette *chapeau mexicain*, notée g2 dans le programme.

```
setproc ana {{path1 '8_20'} {tbe 1} {grb '010921'} {minscale 1}} {
1
     # fichiers d'entrée
      if (tbe == 1) {
       sprintf ofi '../LC/%s/grb%s_lcb1_nn.dat' path1 grb
5
     } else {
       sprintf ofi '../LC/%s/grb%s_lcb2_nn.dat' path1 grb
      }
10
     # fichiers de sortie
      if (tbe == 1) {
       sprintf ofext '%s/grb%s_lcb1_ext.dat' path1 grb
       sprintf psf '%s/grb%s_lcb1_cwt.eps' path1 grb
      } else {
15
       sprintf ofext '%s/grb%s_lcb2_ext.dat' path1 grb
       sprintf psf '%s/grb%s_lcb2_cwt.eps' path1 grb
      }
     printf '> grb%s\n' grb
     printf '> Input (denoised): \'%s\'\n' ofi
20
     printf '> Output (extrema): \'%s\'\n' ofext
      25
      ## RECHERCHE D'EXTREMA
      *****
      # Chargement des données
      t1=<>
30
     read t1 ofi
     # On aurait pu aussi faire directement 'read Owa ofi'
      wa = [new &wtrans]
      0wa=t1
```

```
# ddt1 contient la dérivée seconde du signal de départ.
      # Elle est utilisée pour dire si l'extrema est un minima ou
      # un maxima.
      dt1 = der(t1)
40
      ddt1 = der(dt1)
      # La CWT se fait sur un intervalle d'échelle déterminé
      # automatiquement
      # g2 désigne l'ondelette chapeau mexicain
45
      onmax = [cwtdoctmax t1.size minscale 20 'g2']
      printf '> Extrema search...\n'
      printf '> Minimum scale : %f\n' minscale
      printf '> Octave Max : %f\n' onmax
      # Continuous Wavelet Transform
50
      cwtd wa minscale onmax 20 'g2'
      er1 = [new &extrep]
      extrema wa er1
55
      # Ouverture du fichier de sortie. 'ofext' est le nom
      # du fichier.
      stream=[file open ofext 'w']
60
      file set stdout stream
      # Boucle sur tous les extrema
      for {ext = er1.D[1,1];;i=1} (ext isnot null) {ext = ext.next;;i+=1} {
65
        no = er1.noct
        nv = er1.nvoice
        sig = Zero(no*nv)
        sig.x0 = 0
70
        sig.dx = 1/nv
        scale = ext.y
75
        # Pour chaque extrema, on suit la courbe des modules maximaux
        for {ext1 = ext} (ext1 isnot null) {ext1=ext1.finer} {
          sig[ext1.y] = ext1.z
        }
        for {ext1 = ext.coarser} (ext1 isnot null) {ext1=ext1.coarser} {
80
          scale = ext1.y
          sig[ext1.y] = ext1.z
```

35

```
}
          sig.size = scale+1
         sigfin = log2(abs(sig))
85
         # fit pour déterminer le coefficient de Lipschitz
          res=[stats fit sigfin -x 0 0.5]
          lipschitz=res[0]
90
         # valeur de la dérivée en chaque extremum
         ds = dt1[int(ext.x)]
          # minimum ou maximum ?
          signe = '0'
95
          if (ddt1[int(ext.x)] > 0) {
            signe = '-'
          } else {
            signe = '+'
100
          }
         # Ecriture dasn le fichier de sortie
          if (lipschitz >= 0) {
           printf '%3d %12.6f %12.6f %12.6f %12.6f %4c\n' ...
         }
105
       }
       # Fermeture du fichier de sortie
       file set stdout 1
110
       file close stream
```

```
}
```

Références

- [151] P.-A. Muller et N. Gaertner, Modélisation objet avec UML. Eyrolles, 2000. Voir aussi http://www.uml.org/.
- [152] S. Ritz et al., The Gamma-ray Large Area Space Telescope (GLAST) Mission. Bulletin of the American Astronomical Society, 205:606-+, 2004.
- [153] R.C. Hartman *et al.*, The third EGRET catalog of high-energy gamma-ray sources. *ApJS*, 123:79-202, 1999.
- [154] http://www.mysql.com/.
- [155] J. Fourier, *Théorie analytique de la chaleur*. Chez Firmin Didot, Père et Fils, Paris, 1822.
- [156] D. Gabor, Theory Of Communication. J. IEE, 93, 429-457, 1946.
- [157] S. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1999.
- [158] A. Haar, Zur Theorie der orthogonalen Funktionensysteme. *Math. Annal., 69, 331-371,* 1910.
- [159] D. Donoho et I. Johnston, Ideal spatial adaptation via wavelet shrinkage. *Biometrika*, 81, 425-455, 1994.
- [160] S. Jaffard, Pointwise Smoothness, Two-microlocalization and Wavelet Coefficients. Publications Mathématiques, 35, 155-158, 1991.
- [161] E. Bacry, 2004, LastWave version 2.0.3, disponible à l'adresse http://www.cmap. polytechnique.fr/~bacry/LastWave/.
- [162] D. Donoho et al., 1999, WaveLab version 802, http://www-stat.stanford.edu/ ~wavelab/.
- [163] http://www.mathworks.com.

Table des figures

1.1	Un électroscope à feuilles d'or.	22
1.2	Victor Hess après un de ses vols en ballon.	22
1.3	Le satellite Explorer-XI	23
1.4	Le déploiement du satellite CGRO.	23
1.5	Les sources du troisième catalogue EGRET	24
1.6	Relevé du plan galactique effectué par HESS	25
1.7	Les mécanismes de production des rayons gamma	27
1.8	Le ciel gamma vu par EGRET, pour des énergies supérieures à 100 MeV.	28
1.9	Le noyau de la galaxie NGC 4261	29
1.10	Les modes d'interactions des photons gamma avec la matière	31
1.11	Sections efficaces d'interaction des photons dans le plomb	31
1.12	Le spectre électromagnétique	32
1.13	Un des quatre télescope de l'expérience HESS.	33
1.14	L'échantillonneur CELESTE.	33
1.15	Un des 1600 détecteurs d'Auger installé dans la Pampa Argentine	34
1.16	Principe de fonctionnement d'une chambre à étincelles.	35
1.17	GLAST : vue éclatée du LAT.	36
2.1	Vue d'artiste du satellite Vela-5B.	40
2.2	L'un des huit modules de BATSE.	41
2.3	Le satellite SWIFT. Image NASA E/PO	42
2.4	Vue d'artiste du satellite INTEGRAL. Image ESA.	43
2.5	Principe de la triangulation par l'IPN	44
2.6	Répartition des positions et des durées des sursauts observés par BATSE	45
2.7	Évolution du rapport de dureté moyen en fonction de la durée des sursauts.	46
2.8	Les courbes de lumière de quelques sursauts observés par BATSE	47
2.9	Distributions des exposants $lpha$ et eta caractérisant le spectre des sursauts d'après	
	le modèle de Band.	48

 2.10 2.11 2.12 2.13 2.14 2.15 2.16 	Spectre du GRB 041006 mesuré par FREGATE, intégré sur la durée du sursaut, après passage dans la matrice de réponse de l'instrument et avec l'ajustement par une fonction de Band. Afterglow X du GRB 970228 observé par BeppoSAX. Afterglow visible du GRB 990123 observé par le télescope spatial Hubble. Distribution des redshifts pour les 70 sursauts pour lesquels ils ont pu être déterminés jusqu'en décembre 2005. Évolution du spectre de GRB 030329/SN2003 entre le 1 ^{er} et le 8 avril 2003. Schéma illustrant le modèle des chocs. Schéma illustrant le modèle cannonball.	49 50 51 52 53 53
3.1 3.2 3.3 3.4	Le détecteur AMS-01 à bord de la navette <i>Discovery</i> . Schéma d'AMS-01. Déplacements des plans du STD mesurés en orbite et au sol au moyen du système laser. Produit de la rigidité et de la charge mesuré pour une sélection d'événements	56 57 59
3.5 3.6 3.7 3.8 3.9	tels que 2 = 2. Flux différentiel des protons mesuré par AMS-01 dans la région équatoriale. Vue éclatée d'AMS-02. Les différents sous-détecteurs d'AMS-02. Courbe de rotation de la galaxie NGC 6503. Prédiction de la mesure de la fraction de positons pour trois ans d'opération.	60 60 62 63 66 66
 4.1 4.2 4.3 4.4 4.5 	Un lancement de la fusée Pegasus. Le satellite HETE-2. Le satellite HETE-2 tourne autour de la Terre en présentant toujours la même face au Soleil. Les instruments d'HETE-2 vus du haut. Position des stations radio au sol utilisées par HETE-2.	70 70 71 72 75
5.1 5.2 5.3 5.4 5.5	Un plan du STD en cours d'assemblage	88 89 90 91 91
6.1 6.2 6.3 6.4	Schéma du ECAL tel qu'il était équipé pour les tests faisceau	94 95 96 97
6.5 6.6	Répartition des runs physiques en fonction du type de particule et de l'énergie du faisceau. Évolution du niveau moven et de la RMS du piédestal pour le pixel 1 du PM	97
6.7	4050, pour toute la durée du test. Évolution du niveau moyen et de la RMS du piédestal pour le pixel 1 du PM 5030, pour toute la durée du test.	98 98

6.9 Évolution de l'énergie déposée dans le pixel 1 et dans la dernière dynode du PM 6040, pour le run 1090
PM 6040, pour le run 1090
6.10Distribution de n_{chan} pour le run proton 742, avec une coupure du bruit à 10 σ pour tout le calorimètre et la tour touchée par le faisceau.1026.11Énergie déposée dans le calorimètre après sélection des événements MIP par une coupure sur n_{chan} .1036.12Variation de la MPV au cours du temps.1046.13Distribution des écarts relatifs entre les niveaux des piédestaux et entre les valeurs de σ_{ped} .1046.14Évolution du MPV en fonction du temps, pour les protons.1066.15Évolution du MPV en fonction du temps, pour les protons.1066.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1076.17Distribution de numPV pour les protons et les antiprotons.1086.18Évolution du MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des flectrons de 120 GeV.1106.20Distribution de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la
σ pour tout le calorimètre et la tour touchée par le faisceau.1026.11Énergie déposée dans le calorimètre après sélection des événements MIP par une coupure sur n_{chan} .1036.12Variation de la MPV au cours du temps.1046.13Distribution des écarts relatifs entre les niveaux des piédestaux et entre les valeurs de σ_{ped} .1046.14Évolution du MPV en fonction du temps, pour les protons.1066.15Évolution du MPV en fonction du temps, pour les protons.1066.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1076.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution du MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des protons de 120 GeV.1106.20Distribution de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.25Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1166.27Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV.1166.29Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV.117
6.11 Energie déposée dans le calorimètre après sélection des événements MIP par une coupure sur n_{chan} . 103 6.12 Variation de la MPV au cours du temps. 104 6.13 Distribution des écarts relatifs entre les niveaux des piédestaux et entre les valeurs de σ_{ped} . 104 6.14 Évolution du MPV en fonction du temps, pour les protons. 106 6.15 Évolution du MPV en fonction du temps, pour les antiprotons. 106 6.16 Évolution du MPV en fonction du temps, pour les antiprotons. 107 6.17 Distribution du MPV en fonction du temps, pour les protons et les antiprotons. 108 6.18 Évolution du MPV pour les protons et les antiprotons. 108 6.19 Distribution du MPV pour les protons et les antiprotons. 108 6.19 Distribution de MPV pour les protons et les antiprotons. 108 6.19 Distribution de avaiables n_{chan} pour des floots de 3 GeV et de 120 GeV. 110 6.20 Distribution de la constante de calibration. 112 6.21 Détermination de la constante de calibration. 112 6.22 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée. 113 6.23 Évaluation
une coupure sur n_{chan} .1036.12Variation de la MPV au cours du temps.1046.13Distribution des écarts relatifs entre les niveaux des piédestaux et entre les valeurs de σ_{ped} .1046.14Évolution du MPV en fonction du temps, pour les protons.1066.15Évolution du MPV en fonction du temps, pour les antiprotons.1066.16Évolution du MPV en fonction du temps, pour les antiprotons.1066.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1076.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1116.21Détermination de la contante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV.1146.25Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profil de gerbe avec des protons à 120 GeV.1146.25Comparaison données/MC pour l'énergie totale déposée par des fectrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (
6.12Variation de la MPV au cours du temps.1046.13Distribution des écarts relatifs entre les niveaux des piédestaux et entre les valeurs de σ_{ped} .1046.14Évolution du MPV en fonction du temps, pour les protons.1066.15Évolution du MPV en fonction du temps, pour les antiprotons.1066.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1066.16Évolution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1116.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV.1146.25Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.26Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV.117 </td
0.15Distribution de carls relatis entre les inveaux des piedestaux et entre lesvaleurs de σ_{ped} .1046.14Évolution du MPV en fonction du temps, pour les protons.1066.15Évolution du MPV en fonction du temps, pour les antiprotons.1066.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1076.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1106.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV.1146.25Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.26Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie
6.14Évolution du MPV en fonction du temps, pour les protons.1066.15Évolution du MPV en fonction du temps, pour les antiprotons.1066.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1076.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1106.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.25Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV. Comparaison avec la simulation.1176.29
6.15Évolution du MPV en fonction du temps, pour les antiprotons.1066.16Évolution du MPV en fonction du temps, pour les antiprotons.1076.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1106.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.25Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.1176.29Énergie déposée (en keV) dans chaque
6.16Évolution du MPV en fonction du temps, pour les protons et les antiprotons.1076.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1106.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV.1146.25Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour le profil de gerbe avec des protons à 120 GeV.1146.25Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des flectrons de 120 GeV.117
6.17Distribution du MPV pour les protons et les antiprotons.1086.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1106.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV.1146.25Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.26Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.117
6.18Évolution de σ_L en fonction de la MPV pour les protons et les antiprotons.1086.19Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV.1106.20Distribution de la variables n_{chan} pour des protons de 120 GeV.1106.21Détermination de la constante de calibration.1126.22Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée.1136.23Évaluation du leakage dans la dernière couche du calorimètre.1146.24Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV.1146.25Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV.1146.26Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe.1156.27Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation.1166.28Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV. Comparaison avec la simulation.117
 6.19 Distributions de la variables n_{chan} pour des électrons de 3 GeV et de 120 GeV. 110 6.20 Distribution de la variables n_{chan} pour des protons de 120 GeV. 110 6.21 Détermination de la constante de calibration. 112 6.22 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée. 113 6.23 Évaluation du leakage dans la dernière couche du calorimètre. 114 6.24 Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV. 114 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 114 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 115 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation. 116 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 117 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV. 117
 6.20 Distribution de la variables n_{chan} pour des protons de 120 GeV. 110 6.21 Détermination de la constante de calibration. 112 6.22 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée. 113 6.23 Évaluation du leakage dans la dernière couche du calorimètre. 114 6.24 Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV. 114 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 114 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 115 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation. 116 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 117 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
 6.21 Détermination de la constante de calibration. 6.22 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée. 6.23 Évaluation du leakage dans la dernière couche du calorimètre. 6.24 Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV. 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 6.29 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 6.29 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 6.29 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV.
 6.22 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour l'énergie totale déposée. 6.23 Évaluation du leakage dans la dernière couche du calorimètre. 114 6.24 Comparaison données/MC pour l'énergie totale déposée par des protons à 120 GeV. 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
6.23 Évaluation MC pour l'energie totale deposee. 113 6.23 Évaluation du leakage dans la dernière couche du calorimètre. 114 6.24 Comparaison données/MC pour l'énergie totale déposée par des protons à 114 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 114 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 114 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 115 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. 116 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 117 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV. 117
 6.23 Evaluation du leakage dans la dernière couche du calorimetre
 6.24 Comparaison données/MC pour l'énérgie totale deposée par des protons à 120 GeV. 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation. 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation. 117 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
 6.25 Comparaison données/MC pour le profil de gerbe avec des protons à 120 GeV. 114 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 115 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation. 116 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. 117 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
 6.26 Comparaison entre les données électrons du test faisceau et les résultats de la simulation MC pour les profils de gerbe. 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation. 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation. 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
simulation MC pour les profils de gerbe
 6.27 Énergie déposée (en keV) dans chaque couche par des électrons de 3 GeV. Comparaison avec la simulation. 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation. 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
Comparaison avec la simulation.1166.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation.1176.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
 6.28 Énergie déposée (en keV) dans chaque couche par des électrons de 120 GeV. Comparaison avec la simulation. 6.29 Énergie déposée (en keV) dans chaque couche par des protons de 120 GeV.
Comparaison avec la simulation
6.29 Energie déposée (en keV) dans chaque couche par des protons de 120 GeV.
Comparaison avec la simulation
6.30 Signal de dynode en fonction de la somme des quatre anodes (PIVI 6040) 119
6.32 Épergie déposée dans la dernière dynode en fonction de l'épergie déposée dans
les anodes
6.33 Variations de <i>A</i> en fonction de l'énergie
6.34 Énergie déposée dans la couche 15. Correction avec la dernière dynode 121
(.1 La Station spatiale tourne de manière à présenter toujours la même face vers
respace. 125 7.2 Définition de l'angle d'incidence 125
7.3 La carte d'exposition obtenue pour les dix intervalles d'angle d'incidence et
pour une période de précession.
7.4 L'anomalie Sud-Atlantique vue par le satellite ROSAT

7.5 7.6 7.7	Limite supérieure sur le signal à 90% de niveau de confiance, en fonction du nombre d'événements observés	132 134 134
8.1 8.2	Les différentes étapes de l'interaction d'un graviton avec notre univers à trois dimensions. \ldots Évolution de la grandeur K_l en fonction du redshift z . \ldots	151 153
9.1 9.2 9.3 9.4	Les courbes de lumière des douze sursauts dans la bande d'énergie 6–400 keV. Courbe de lumière brute du GRB 041006 dans la bande d'énergie 6–400 keV. Projection de la courbe de lumière dans la zone hachurée de la figure 9.2. Courbes de lumières débruitées et dont le bruit a été soustrait des sursauts	158 159 159
9.5	GRB 041006 et GRB 030323	160 162
9.6 9.7 9.8	Courbes de lumière du GRB 041006 pour les bandes d'énergie 8–30 keV et 60–350 keV avant et après débruitage	164 165
10.1	Ecarts moyens en énergie en fonction du paramètre K_l dans le cas du scénario	160
10.2	#2. Ecarts moyens en temps en fonction du paramètre K_l dans le cas du scénario #2.	169
10.3 10.4	Distribution des valeurs de la dérivée pour chaque singularité repérée par la CWT pour les douze sursauts et cinq bandes d'énergie différentes. Distribution des écarts en temps pour les paires trouvées dans le cas du scénario	170
10.5 10.6	#2	171 172 173
10.7 10.9 10.8	295% CL en fonction de ΔE . Évolution de a en fonction de la limite sur E_{QG} pour les minima et les maxima Évolution de γ^2 en fonction de M pour les minima et les maxima	175 176 176
10.1	DEffet du choix du niveau de décomposition sur la qualité du débruitage	178
B.1	Le diagramme de classe UML du simulateur rapide	201
C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8	Iransformée de Fourier d'un signal comportant deux fréquences différentes. Transformées de Fourier par fenêtre avec deux largeurs de fenêtres différentes. Boîtes d'Heisenberg de deux fenêtres $g_{u,\xi}$ et $g_{v,\gamma}$	 210 210 212 213 214 214 216 217

C.9	Décomposition de la fonction $f(t)$ sur une base orthonormée d'ondelettes.	21	8
C.10	Débruitage d'un signal par seuillage des coefficients d'ondelette.	22	0
C.11	CWT et modules maximaux.	22	3
C.12	Décroissance de $\log_2 Wf(u,s) $ le long d'une courbe de maxima	22	3

Liste des tableaux

4.1	Caractéristiques du détecteur FREGATE	72
 6.1 6.2 6.3 6.4 6.5 6.6 	Ensemble des runs physiques utilisés pour l'étude du MIP. Ensemble des runs piédestaux utilisés pour l'étude du MIP. Ensemble des runs physiques e^- utilisés pour la comparaison données/MC. Ensemble des runs piédestaux e^- utilisés pour la comparaison données/MC. Efficacité des coupures dans le cas des électrons pour différentes énergies. Les valeurs de A déterminées par ajustement pour le PM 3050 et pour différentes énergies.	101 102 109 109 111 120
7.1	Valeur des temps d'exposition pour les dix intervalles d'angle d'incidence et	127
7.2	Valeurs des paramètres ajustés dans les équations 7.10 et 7.12 pour le mode	121
	conversion et le mode calorimètre	129
7.3	Extrait du 3 ^e catalogue EGRET montrant l'ensemble des sources étudiées.	134
(.4	Nombre de photons pour un an d'opérations et pour différentes sources du catalogue EGRET, dans différentes bandes d'énergie.	135
7.5	Nombre de photons au dessus de 1 GeV pour un an d'opérations et pour différentes sources du catalogue EGRET.	136
7.6	Nombre de photons du fond diffus extragalactique détectés en un an à 2σ pour un souil de 1 CoV	126
77	Nombre de photons du fond diffus galactique détectés en un an $\frac{1}{2}$ 2 σ pour un	120
1.1	seuil de 1 GeV	136
7.8	Paramètres des différents profils de densité utilisés.	137
7.9	Les paramètres mSUGRA pour cinq modèles de benchmark : masse du neutra-	
	lino m_{χ} , m_0 et $tan\beta$.	139
7.10	Nombre de photons de fond obtenu à 2σ pour la paramétrisation de Bergström et pour différents seuils en énergie.	139
7.11	Nombre de photons de fond obtenu à 2σ pour la paramétrisation de Hunter et	
	pour des seuils de 1 et 2 GeV.	139

7.12	Nombre de photons attendu dans le STD pour différents modèles de benchmark et pour un seuil de 1 GeV.	. 140
7.13	Nombre de photons attendu dans le STD pour différents modèles de benchmark et pour un seuil de 2 GeV.	. 140
7.14	Nombre de photons attendu dans le STD pour différents modèles de benchmark et pour un seuil de 2.5 GeV.	. 140
7.15	Nombre de photons attendu dans le STD pour différents modèles de benchmark et pour un seuil de 3 GeV.	. 140
7.16 7.17	Résultats et significativité pour les sources EGRET. Résumé des résultats et significativités pour les modèles de benchmark et pour	. 142
	un seuil de 3 GeV.	. 142
9.1 9.2	Ensemble des sursauts utilisés dans notre étude. Binning choisi pour réaliser les courbes de lumières. Estimation du niveau de	. 158
9.3	bruit (moyenne et variance). Les différents scénarios utilisés pour le choix des bandes d'énergie.	. 160 . 160
9.4	Indices spectraux des douze sursauts gamma obtenus par le fit avec la somme de deux exponentielles et d'une constante.	. 162
10.1	Valeurs des écarts d'énergie moyens $\Delta < E >$ pour les six premiers GRB et tous les choix des bandes d'énergie.	. 169
10.2	Valeurs des écarts d'énergie moyens $\Delta < E >$ pour les six autres GRB et tous les choix des bandes d'énergie.	. 169
10.3	Nombre de paires obtenues avant et après les sélections sur σ_{cut} et α_{cut} en sommant sur tous les sursauts, pour tous les scénarios et en considérant tous	
	les extrema.	. 172
10.4	Résultats des ajustements par l'équation 10.8 pour les minima et les maxima.	. 174
10.5	Valeurs minimums des χ^2 /ndf obtenus avec les différents scénarios pour les minima et les maxima.	. 177
10.6	Valeurs des limites sur E_{QG} (GeV) obtenues avec les différents scénarios pour	177
	ies minima et les maxima.	. 1//
A.1 A.2	Ensemble des runs piédestaux utilisés dans ce travail de thèse	. 189 . 191

Index

Α

aérogel 57,65 accélération de particules chargées 26 91, 128 acceptance Active Galactic Nuclei 28 afterglow 39.48 voir Active Galactic Nuclei AGN AMS Fast Simulator 123-141, 201 fichier de configuration 202, 204-207 AMS-01 55.57 58 aimant compteur à aérogel 58 détecteur de trace au Silicium 58 STD 57 TOF 57, 58 véto 58 AMS-02 35, 55, 61 64, 87 aimant compteurs anti-coïncidence 64 détecteur à radiation de transition 62 ECAL 88 acceptance 91 facteur de rejet 90 résolution 91 GPS 65 RICH 64 simulation rapide 123-141, 201 Star-Tracker 65 STD 87 acceptance 91 90 facteur de rejet

résolution 91 véto 64 AMSFS voir AMS Fast Simulator Andrade (Edward) 21 angle d'incidence 124 annihilation de neutralinos 67, 137 matière-antimatière 26 Anomalie Sud-Atlantique 60.127 antimatière 67 approximation multirésolution 215 arcminute (') 42 arcseconde (") 42 astronomie gamma 21 - 37Auger 34

В

Band (modèle de -) 48 BATSE 24, 42, 48, 155, 161 Becquerel (Henri) 21 benchmark (modèles de -) 138, 139, 141 BeppoSAX 42 blazar 25, 29, 133 bremsstrahlung voir rayonnement de freinage

С

CACTUS 25 calibration voir étalonnage calibration (constante de -) 111 calorimètre 35.36 calorimètre électromagnétique 88, 93 CANGAROO 25 cannonballs (modèle des -) 53 carte d'exposition 124.207 CAT 25 CELESTE 25.34 centre galactique 23, 24, 26, 127, 137 Čerenkov (effet -) 22, 30, 32, 35, 65 CGRO 24, 41 chambre à étincelles 35 coefficient de Lipschitz 166. 221. 227 163.219 coefficients d'ondelette seuillage 163, 219 compteur à scintillation 35 Compton effet -26, 30 télescope -35 COS-B 23, 24, 35 COSMOS-461 40 coupure géomagnétique 60 courbe de lumière 46, 159, 163, 170 CWT voir transformée en ondelettes continues

D

débruitage 162, 218 détecteur à effet Čerenkov atmosphérique 32 échantillonneur 34 imageur 33 détecteur à fluorescence 34 DarkSUSY 139 diffusion Compton 26.30 inverse Compton 26 dimensions supplémentaires 150 disque d'accrétion 28.29 DWT voir transformée en ondelettes discrètes dynode 120 signal de -119

E

ECAL 88 échelle 213 ECLAIRs 54 EGRET 24, 29, 35, 131 catalogue - 25, 133, 141, 202, 207 émission retardée voir afterglow étalonnage 93 étoile à neutrons 28 Explorer-XI 23 exposition 124

F

fireball (modèle -) 53 fluorescence (détecteur à -) 34 flux différentiel 127 127, 207 intégré fond diffus extragalactique 29 galactique 28 FREGATE 71, 157, 167

G

gamma astronomie -21-37 21 découverte détecteurs au sol 30, 32, 34 détecteurs en orbite 30, 35 détection 29-37 interaction avec la matière 30 mécanismes de production 26 accélération de particules chargées 26 annihilation 26 collisions 26 effet inverse Compton 26 effet synchrotron 26 radioactivité 26 rayonnement de freinage 26 Gamma ray bursts Coordinates Network 75 voir Gamma ray bursts Coordinates GCN Network 123 GEANT gerbe atmosphérique 32 GLAST 26, 36, 54, 123 GBM 37 LAT 36 gravitation quantique 149-151 à boucles 150 graviton 150 GRB voir sursaut gamma

Η

halo de matière noire 137

Index

```
HEGRA
           25
Helios-2
           41, 44
HESS
         25, 34, 141
Hess (Victor)
                 21
            26
HESS-II
HETE-1
            69
HETE-2
            25, 45, 69-75, 155
    alimentation
                    73
    contrôle d'attitude
                          73
                      74
    déclenchement
    dispositif au sol
                       74
                  71, 157, 167
    FREGATE
    SXC
            73
    WXM
             71
```

1

IMP-7 40 25, 43, 45 INTEGRAL interétalonnage 93, 105, 119, 121 intercalibration voir interétalonnage Interplanetary Network 41, 44, 75 IPN voir Interplanetary Network ISEE-3 41 ISS voir Station Spatiale Internationale

Κ

KONUS 41, 45

L

LastWave 165, 166, 225, 226 Lightest Supersymmetric Particle 134 longueur de radiation 88 LSP voir Lightest Supersymmetric Particle

М

méthode de la médiane 163, 219 MAGIC 25.141 Mars Odyssey 45 matière noire 26.66.134 voir simulation MC (Monte Carlo) MESSENGER 45 28 microquasar Minimum Ionizing Particle voir MIP 94, 95, 100-107, 121 MIP MIR (station -) 55 modèle standard cosmologique 152

de la physique des particules 53, 149 mode conversion 89 mode photon unique 90 modules maximaux 165 MySQL 202, 203

N

neutralino (χ_1^0) 134 noyaux actifs de galaxies 28

0

0G0-1 40 ondelette chapeau mexicain 164, 213 de Haar 215 Symmlet 164, 220, 226 216 ondelettes orthogonales orbite 124 OSO-3 23 OSSE 155

Ρ

paramétrisation surface effective 128 parsec (pc) 29 photoélectrique (effet -) 30 photomultiplicateur 89 photon gamma voir gamma piédestal 96 Pionner 44 pions neutres (π^0) 26 ΡM voir photomultiplicateur production de paire 30 profil de densité 137 profil de gerbe 119 PROGNOZ-2 40 pseudo-redshift 51 pulsar 25, 28, 133

R

régularité lipschitzienne 165.221 rémanente (émission -) voir afterglow résolution angulaire 129 radioactivité 26 RADSAT 40 rayonnement de freinage 26 rayons cosmiques 21,66 chargés 21

composition 21 rayons gamma voir gamma relativité générale 150 reste de supernova 27 RHESSI 45 rigidité 88 ROOT 123, 202, 207 Rutherford (Ernest) 21

S

SAS-2 23 seuil Čerenkov des électrons 32 Si-Tracker voir trajectomètre simulation Monte Carlo 93, 108, 123 rapide 123 SNR voir reste de supernova **SPACAL** 88 SPS voir Super Proton Synchrotron STACEE 25 Station Spatiale Internationale 55, 61, 64, 93, 124 orbite 123.124 STD voir trajectomètre STFT voir transformée de Fourier à courte période ou par fenêtre Super Proton Synchrotron 94 supernova 27, 51 Supernova Remnant voir reste de supernova supersymétrie 134 surface effective 91.128 sursaut gamma 39-54, 149, 157, 167 afterglow 48 catalogues 41 courbe de lumière 46, 159, 163, 170 découverte 40 durée 45 galaxie hôte 39, 51 modèles 53 48 spectre SUSPECT 139 SWIFT 25. 43. 45. 155 symétrie de Lorentz 150 voir ondelette symmlet synchrotron (effet -) 26

T90 159

tests faisceau 93-122 théorie des cordes 150 théorie quantique des champs 149 trajectomètre 35, 36, 87 transformée de Fourier 209-211 à courte période 211 par fenêtres 211 transformée en ondelettes 157, 211-222 continues 164, 212–215, 220–222 discrètes 162, 215-218 et débruitage 162, 218-220 et recherche d'extrema 164, 220-222 trou noir 28

U

UML 201

V

Vela (satellites -) 40 Venera 41, 44 VERITAS 25, 141 Villard (Paul) 21

W

WaveLab 163, 225, 226 Weakly Interacting Massive Particle 137, 138 WFT voir transformée de Fourier par fenêtres WHIPPLE 24, 155 WIMP voir Weakly Interacting Massive Particle

Т

Index

Détection des gamma dans l'expérience AMS et analyse temporelle des sursauts gamma par la mission HETE-2

Résumé

AMS est un détecteur de particules qui sera embarqué à bord de la Station Spatiale Internationale début 2008. Avec son trajectomètre en silicium et son calorimètre électromagnétique, il pourra détecter les photons entre 1 GeV et 300 GeV. Dans la première partie de cette thèse, nous donnons les résultats obtenus lors de l'analyse des données d'un test sur faisceau du calorimètre électromagnétique. À l'aide d'un logiciel de simulation rapide, nous évaluons les capacités de détection d'AMS en gamma. Nous donnons des prédictions de flux pour différents types de sources astrophysiques et pour un halo de matière noire supersymétrique au centre galactique.

HETE-2 est un satellite actuellement en fonctionnement qui est conçu pour détecter et localiser les sursauts gamma. Du fait des énergies mises en jeu, ce type de source pourrait être utilisé pour tester des domaines de la physiques inaccessibles aux accélérateurs. Dans la deuxième partie de la thèse, nous étudions les courbes de lumières de douze sursauts gamma observés par le détecteur FREGATE à bord d'HETE-2 et pour lesquels une mesure du redshift est disponible. En étudiant les écarts temporels entre des photons de différentes énergies, nous pouvons déterminer une limite inférieure sur l'échelle de gravitation quantique de $E_{QG} > 10^{15}$ GeV.

Mots-clés : rayons cosmiques - photons gamma - simulation rapide - sources astrophysiques - matière noire - AMS-02 - Station Spatiale - HETE-2 - sursauts gamma - décalages temporels - analyse en ondelettes - gravitation quantique

Detection of gamma-rays in the AMS experiment and time analysis of gamma-ray bursts by HETE-2 mission

Abstract

AMS is a particle detector that will be launched on the International Space Station at the beginnning of 2008. With the Silicon Tracker and the Electromagnetic Calorimeter, it will be able to measure photons between 1 GeV and 300 GeV. In the first part of this thesis, results of the analysis of the calorimeter test beam data are given. Using a fast simulation tool, the gamma detection capabilities of AMS are evaluated. Predictions are made for different astrophysical sources as well as for the supersymmetric dark matter halo around the Galactic Centre.

HETE-2 is a satellite conceived to detect and localise gamma-ray bursts (GRBs) and is curently taking data. Given the energies released, GRBs could be used to test areas of physics unreachable with accelerators. In the second part of the thesis, we present the study of the light curves of twelve GRBs with known redshifts detected by FREGATE on board of HETE-2. By studying the time lags between photons of different energies, we are able to determine a lower limit on the quantum gravity scale of $E_{QG} > 10^{15}$ GeV.

Keywords : cosmic-rays - gamma - fast simulation - astrophysical sources - dark matter - AMS-02 - Space Station - HETE-2 - gamma-ray bursts - time lags - wavelet analysis - quantum gravity

> Laboratoire de Physique Théorique et Astroparticules LPTA - UMR 5207 - UM2/IN2P3/CNRS - BAT 13 - CC 070 Université Montpellier II - Place Eugène Bataillon 34095 MONTPELLIER Cedex 5 - FRANCE